
Iris
Release 3.0.1

Iris Developers

Jan 27, 2021

GETTING STARTED

1 Installing Iris 3

2 Gallery 5

3 Introduction 71

4 Iris Data Structures 73

5 Loading Iris Cubes 79

6 Saving Iris Cubes 87

7 Navigating a Cube 91

8 Subsetting a Cube 97

9 Real and Lazy Data 101

10 Plotting a Cube 105

11 Cube Interpolation and Regridding 121

12 Merge and Concatenate 131

13 Cube Statistics 141

14 Cube Maths 147

15 Citing Iris 151

16 Code Maintenance 153

17 Introduction 155

18 Metadata 157

19 Lenient Metadata 173

20 Lenient Cube Maths 181

21 Getting Involved 187

22 Working With Iris Source Code 189

i

23 Contributing to the Documentation 199

24 Contributing to the Code Base 203

25 Contributing Your Changes 219

26 Releases 223

27 Iris API 227

28 What’s New in Iris 451

29 Iris Technical Papers 515

30 Iris Copyright, Licensing and Contributors 523

Bibliography 525

Python Module Index 527

Index 529

ii

Iris, Release 3.0.1

A powerful, format-agnostic, community-driven Python package for analysing and visualising Earth science
data.

Iris implements a data model based on the CF conventions giving you a powerful, format-agnostic interface for working
with your data. It excels when working with multi-dimensional Earth Science data, where tabular representations
become unwieldy and inefficient.

CF Standard names, units, and coordinate metadata are built into Iris, giving you a rich and expressive interface for
maintaining an accurate representation of your data. Its treatment of data and associated metadata as first-class objects
includes:

• visualisation interface based on matplotlib and cartopy,

• unit conversion,

• subsetting and extraction,

• merge and concatenate,

• aggregations and reductions (including min, max, mean and weighted averages),

• interpolation and regridding (including nearest-neighbor, linear and area-weighted), and

• operator overloads (+, -, *, /, etc.).

A number of file formats are recognised by Iris, including CF-compliant NetCDF, GRIB, and PP, and it has a plugin
architecture to allow other formats to be added seamlessly.

Building upon NumPy and dask, Iris scales from efficient single-machine workflows right through to multi-core clus-
ters and HPC. Interoperability with packages from the wider scientific Python ecosystem comes from Iris’ use of
standard NumPy/dask arrays as its underlying data storage.

Iris is part of SciTools, for more information see https://scitools.org.uk/. For Iris 2.4 and earlier documentation please
see the legacy documentation.

Install Iris as a user or developer.

Installing Iris

Example code to create a variety of plots.

Gallery

Find out what has recently changed in Iris.

What’s New

Learn how to use Iris.

User Guide

Browse full Iris functionality by module.

Iris API

As a developer you can contribute to Iris.

Getting Involved

GETTING STARTED 1

http://cfconventions.org
http://cfconventions.org/standard-names.html
https://github.com/SciTools/cf_units
https://matplotlib.org/
https://scitools.org.uk/cartopy/docs/latest/
http://www.numpy.org/
https://dask.pydata.org/en/latest/
https://scitools.org.uk/
https://scitools.org.uk/iris/docs/v2.4.0/

Iris, Release 3.0.1

2 GETTING STARTED

CHAPTER

ONE

INSTALLING IRIS

Iris is available using conda for the following platforms:

• Linux 64-bit,

• Mac OSX 64-bit, and

• Windows 64-bit.

Windows 10 now has support for Linux distributions via WSL (Windows Subsystem for Linux). This is a great option
to get started with Iris for users and developers. Be aware that we do not currently test against any WSL distributions.

Note: Iris currently supports and is tested against Python 3.6 and Python 3.7.

1.1 Installing Using Conda (Users)

To install Iris using conda, you must first download and install conda, for example from https://docs.conda.io/en/latest/
miniconda.html.

Once conda is installed, you can install Iris using conda with the following command:

conda install -c conda-forge iris

If you wish to run any of the code in the gallery you will also need the Iris sample data. This can also be installed
using conda:

conda install -c conda-forge iris-sample-data

Further documentation on using conda and the features it provides can be found at https://conda.io/en/latest/index.html.

1.2 Installing From Source (Developers)

The latest Iris source release is available from https://github.com/SciTools/iris.

For instructions on how to obtain the Iris project source from GitHub see Making Your own Copy (fork) of Iris and Set
up Your Fork for instructions.

Once conda is installed, you can install Iris using conda and then activate it. The example commands below assume
you are in the root directory of your local copy of Iris:

3

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/miniconda.html
https://conda.io/en/latest/index.html
https://github.com/SciTools/iris

Iris, Release 3.0.1

conda env create --file=requirements/ci/iris.yml
conda activate iris-dev

The requirements/ci/iris.yml file defines the Iris development conda environment name and all the relevant
top level conda-forge package dependencies that you need to code, test, and build the documentation. If you wish
to minimise the environment footprint, simply remove any unwanted packages from the requirements file e.g., if you
don’t intend to run the Iris tests locally or build the documentation, then remove all the packages from the testing and
documentation sections.

Note: The requirements/ci/iris.yml file will always use the latest Iris tested Python version available. For
all Python versions that are supported and tested against by Iris, view the contents of the requirements/ci directory.

Finally you need to run the command to configure your shell environment to find your local Iris code:

python setup.py develop

1.3 Running the Tests

To ensure your setup is configured correctly you can run the test suite using the command:

python setup.py test

For more information see Running the Tests.

1.4 Custom Site Configuration

The default site configuration values can be overridden by creating the file iris/etc/site.cfg. For example,
the following snippet can be used to specify a non-standard location for your dot executable:

[System]
dot_path = /usr/bin/dot

An example configuration file is available in iris/etc/site.cfg.template. See iris.config() for fur-
ther configuration options.

4 Chapter 1. Installing Iris

https://github.com/scitools/iris/tree/master/requirements/ci

CHAPTER

TWO

GALLERY

The gallery is divided into sections as described below. All entries show the code used to produce the example plot.
Additionally there are links to download the code directly as source or as part of a jupyter notebook, these links are at
the bottom of the page.

In order to successfully view the jupyter notebook locally so you may experiment with the code you will
need an environment setup with the appropriate dependencies, see Installing Iris for instructions. Ensure that
iris-sample-data is installed as it is used in the gallery. Additionally ensure that you install jupyter. The
command to install both is:

conda install -c conda-forge iris-sample-data jupyter

Once you have downloaded the notebooks (bottom of each gallery page), you may start the jupyter notebook via:

jupyter notebook

If you wish to contribute to the gallery see the Gallery section of the Contributing to the Documentation.

2.1 General

2.1.1 Example of a Polar Stereographic Plot

Demonstrates plotting data that are defined on a polar stereographic projection.

5

https://jupyterlab.readthedocs.io/en/stable/

Iris, Release 3.0.1

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
file_path = iris.sample_data_path("toa_brightness_stereographic.nc")
cube = iris.load_cube(file_path)
qplt.contourf(cube)
ax = plt.gca()
ax.coastlines()
ax.gridlines()
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.145 seconds)

6 Chapter 2. Gallery

Iris, Release 3.0.1

2.1.2 Quickplot of a 2D Cube on a Map

This example demonstrates a contour plot of global air temperature. The plot title and the labels for the axes are
automatically derived from the metadata.

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
fname = iris.sample_data_path("air_temp.pp")
temperature = iris.load_cube(fname)

Plot #1: contourf with axes longitude from -180 to 180
plt.figure(figsize=(12, 5))
plt.subplot(121)
qplt.contourf(temperature, 15)
plt.gca().coastlines()

Plot #2: contourf with axes longitude from 0 to 360
proj = ccrs.PlateCarree(central_longitude=-180.0)
plt.subplot(122, projection=proj)
qplt.contourf(temperature, 15)
plt.gca().coastlines()
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 2.021 seconds)

2.1. General 7

Iris, Release 3.0.1

2.1.3 Cross Section Plots

This example demonstrates contour plots of a cross-sectioned multi-dimensional cube which features a hybrid height
vertical coordinate system.

•

8 Chapter 2. Gallery

Iris, Release 3.0.1

•

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
Load some test data.
fname = iris.sample_data_path("hybrid_height.nc")
theta = iris.load_cube(fname, "air_potential_temperature")

Extract a single height vs longitude cross-section. N.B. This could
easily be changed to extract a specific slice, or even to loop over *all*
cross section slices.
cross_section = next(

theta.slices(["grid_longitude", "model_level_number"])
)

qplt.contourf(
cross_section, coords=["grid_longitude", "altitude"], cmap="RdBu_r"

)
iplt.show()

Now do the equivalent plot, only against model level
plt.figure()

(continues on next page)

2.1. General 9

Iris, Release 3.0.1

(continued from previous page)

qplt.contourf(
cross_section,
coords=["grid_longitude", "model_level_number"],
cmap="RdBu_r",

)
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.136 seconds)

2.1.4 Multi-Line Temperature Profile Plot

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

(continues on next page)

10 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

def main():
fname = iris.sample_data_path("air_temp.pp")

Load exactly one cube from the given file.
temperature = iris.load_cube(fname)

We only want a small number of latitudes, so filter some out
using "extract".
temperature = temperature.extract(

iris.Constraint(latitude=lambda cell: 68 <= cell < 78)
)

for cube in temperature.slices("longitude"):

Create a string label to identify this cube (i.e. latitude: value).
cube_label = "latitude: %s" % cube.coord("latitude").points[0]

Plot the cube, and associate it with a label.
qplt.plot(cube, label=cube_label)

Add the legend with 2 columns.
plt.legend(ncol=2)

Put a grid on the plot.
plt.grid(True)

Tell matplotlib not to extend the plot axes range to nicely
rounded numbers.
plt.axis("tight")

Finally, show it.
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.318 seconds)

2.1.5 Fitting a Polynomial

This example demonstrates computing a polynomial fit to 1D data from an Iris cube, adding the fit to the cube’s
metadata, and plotting both the 1D data and the fit.

2.1. General 11

Iris, Release 3.0.1

import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.quickplot as qplt

def main():
Load some test data.
fname = iris.sample_data_path("A1B_north_america.nc")
cube = iris.load_cube(fname)

Extract a single time series at a latitude and longitude point.
location = next(cube.slices(["time"]))

Calculate a polynomial fit to the data at this time series.
x_points = location.coord("time").points
y_points = location.data
degree = 2

p = np.polyfit(x_points, y_points, degree)
y_fitted = np.polyval(p, x_points)

Add the polynomial fit values to the time series to take
full advantage of Iris plotting functionality.

(continues on next page)

12 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

long_name = "degree_{}_polynomial_fit_of_{}".format(degree, cube.name())
fit = iris.coords.AuxCoord(

y_fitted, long_name=long_name, units=location.units
)
location.add_aux_coord(fit, 0)

qplt.plot(location.coord("time"), location, label="data")
qplt.plot(

location.coord("time"),
location.coord(long_name),
"g-",
label="polynomial fit",

)
plt.legend(loc="best")
plt.title("Trend of US air temperature over time")

qplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.418 seconds)

2.1.6 Rotated Pole Mapping

This example uses several visualisation methods to achieve an array of differing images, including:

• Visualisation of point based data

• Contouring of point based data

• Block plot of contiguous bounded data

• Non native projection and a Natural Earth shaded relief image underlay

2.1. General 13

Iris, Release 3.0.1

•

14 Chapter 2. Gallery

Iris, Release 3.0.1

•

2.1. General 15

Iris, Release 3.0.1

•

16 Chapter 2. Gallery

Iris, Release 3.0.1

•

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import iris
import iris.analysis.cartography
import iris.plot as iplt
import iris.quickplot as qplt

def main():
Load some test data.
fname = iris.sample_data_path("rotated_pole.nc")
air_pressure = iris.load_cube(fname)

Plot #1: Point plot showing data values & a colorbar
plt.figure()
points = qplt.points(air_pressure, c=air_pressure.data)
cb = plt.colorbar(points, orientation="horizontal")
cb.set_label(air_pressure.units)
plt.gca().coastlines()
iplt.show()

Plot #2: Contourf of the point based data
plt.figure()
qplt.contourf(air_pressure, 15)
plt.gca().coastlines()
iplt.show()

(continues on next page)

2.1. General 17

Iris, Release 3.0.1

(continued from previous page)

Plot #3: Contourf overlayed by coloured point data
plt.figure()
qplt.contourf(air_pressure)
iplt.points(air_pressure, c=air_pressure.data)
plt.gca().coastlines()
iplt.show()

For the purposes of this example, add some bounds to the latitude
and longitude
air_pressure.coord("grid_latitude").guess_bounds()
air_pressure.coord("grid_longitude").guess_bounds()

Plot #4: Block plot
plt.figure()
plt.axes(projection=ccrs.PlateCarree())
iplt.pcolormesh(air_pressure)
plt.gca().stock_img()
plt.gca().coastlines()
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.790 seconds)

2.1.7 Test Data Showing Inset Plots

This example demonstrates the use of a single 3D data cube with time, latitude and longitude dimensions to plot a
temperature series for a single latitude coordinate, with an inset plot of the data region.

18 Chapter 2. Gallery

Iris, Release 3.0.1

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.quickplot as qplt
import iris.plot as iplt

def main():
cube1 = iris.load_cube(iris.sample_data_path("ostia_monthly.nc"))
Slice into cube to retrieve data for the inset map showing the
data region
region = cube1[-1, :, :]
Average over latitude to reduce cube to 1 dimension
plot_line = region.collapsed("latitude", iris.analysis.MEAN)

Open a window for plotting
fig = plt.figure()
Add a single subplot (axes). Could also use "ax_main = plt.subplot()"
ax_main = fig.add_subplot(1, 1, 1)
Produce a quick plot of the 1D cube
qplt.plot(plot_line)

Set x limits to match the data

(continues on next page)

2.1. General 19

Iris, Release 3.0.1

(continued from previous page)

ax_main.set_xlim(0, plot_line.coord("longitude").points.max())
Adjust the y limits so that the inset map won't clash with main plot
ax_main.set_ylim(294, 310)
ax_main.set_title("Meridional Mean Temperature")
Add grid lines
ax_main.grid()

Add a second set of axes specifying the fractional coordinates within
the figure with bottom left corner at x=0.55, y=0.58 with width
0.3 and height 0.25.
Also specify the projection
ax_sub = fig.add_axes(

[0.55, 0.58, 0.3, 0.25],
projection=ccrs.Mollweide(central_longitude=180),

)

Use iris.plot (iplt) here so colour bar properties can be specified
Also use a sequential colour scheme to reduce confusion for those with
colour-blindness
iplt.pcolormesh(region, cmap="Blues")
Manually set the orientation and tick marks on your colour bar
ticklist = np.linspace(np.min(region.data), np.max(region.data), 4)
plt.colorbar(orientation="horizontal", ticks=ticklist)
ax_sub.set_title("Data Region")
Add coastlines
ax_sub.coastlines()
request to show entire map, using the colour mesh on the data region only
ax_sub.set_global()

qplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.211 seconds)

2.1.8 Applying a Filter to a Time-Series

This example demonstrates low pass filtering a time-series by applying a weighted running mean over the time dimen-
sion.

The time-series used is the Darwin-only Southern Oscillation index (SOI), which is filtered using two different Lanczos
filters, one to filter out time-scales of less than two years and one to filter out time-scales of less than 7 years.

20 Chapter 2. Gallery

Iris, Release 3.0.1

References

Duchon C. E. (1979) Lanczos Filtering in One and Two Dimensions. Journal of Applied Meteorology,
Vol 18, pp 1016-1022.

Trenberth K. E. (1984) Signal Versus Noise in the Southern Oscillation. Monthly Weather Review, Vol
112, pp 326-332

import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.plot as iplt

def low_pass_weights(window, cutoff):
"""Calculate weights for a low pass Lanczos filter.

Args:

window: int
The length of the filter window.

cutoff: float
The cutoff frequency in inverse time steps.

"""
order = ((window - 1) // 2) + 1
nwts = 2 * order + 1
w = np.zeros([nwts])
n = nwts // 2
w[n] = 2 * cutoff
k = np.arange(1.0, n)
sigma = np.sin(np.pi * k / n) * n / (np.pi * k)
firstfactor = np.sin(2.0 * np.pi * cutoff * k) / (np.pi * k)
w[n - 1 : 0 : -1] = firstfactor * sigma
w[n + 1 : -1] = firstfactor * sigma
return w[1:-1]

(continues on next page)

2.1. General 21

Iris, Release 3.0.1

(continued from previous page)

def main():
Load the monthly-valued Southern Oscillation Index (SOI) time-series.
fname = iris.sample_data_path("SOI_Darwin.nc")
soi = iris.load_cube(fname)

Window length for filters.
window = 121

Construct 2-year (24-month) and 7-year (84-month) low pass filters
for the SOI data which is monthly.
wgts24 = low_pass_weights(window, 1.0 / 24.0)
wgts84 = low_pass_weights(window, 1.0 / 84.0)

Apply each filter using the rolling_window method used with the weights
keyword argument. A weighted sum is required because the magnitude of
the weights are just as important as their relative sizes.
soi24 = soi.rolling_window(

"time", iris.analysis.SUM, len(wgts24), weights=wgts24
)
soi84 = soi.rolling_window(

"time", iris.analysis.SUM, len(wgts84), weights=wgts84
)

Plot the SOI time series and both filtered versions.
plt.figure(figsize=(9, 4))
iplt.plot(

soi,
color="0.7",
linewidth=1.0,
linestyle="-",
alpha=1.0,
label="no filter",

)
iplt.plot(

soi24,
color="b",
linewidth=2.0,
linestyle="-",
alpha=0.7,
label="2-year filter",

)
iplt.plot(

soi84,
color="r",
linewidth=2.0,
linestyle="-",
alpha=0.7,
label="7-year filter",

)
plt.ylim([-4, 4])
plt.title("Southern Oscillation Index (Darwin Only)")
plt.xlabel("Time")
plt.ylabel("SOI")
plt.legend(fontsize=10)
iplt.show()

(continues on next page)

22 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.702 seconds)

2.1.9 Deriving the Coriolis Frequency Over the Globe

This code computes the Coriolis frequency and stores it in a cube with associated metadata. It then plots the Coriolis
frequency on an orthographic projection.

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np

import iris
from iris.coord_systems import GeogCS
import iris.plot as iplt

def main():

(continues on next page)

2.1. General 23

Iris, Release 3.0.1

(continued from previous page)

Start with arrays for latitudes and longitudes, with a given number of
coordinates in the arrays.
coordinate_points = 200
longitudes = np.linspace(-180.0, 180.0, coordinate_points)
latitudes = np.linspace(-90.0, 90.0, coordinate_points)
lon2d, lat2d = np.meshgrid(longitudes, latitudes)

Omega is the Earth's rotation rate, expressed in radians per second
omega = 7.29e-5

The data for our cube is the Coriolis frequency,
`f = 2 * omega * sin(phi)`, which is computed for each grid point over
the globe from the 2-dimensional latitude array.
data = 2.0 * omega * np.sin(np.deg2rad(lat2d))

We now need to define a coordinate system for the plot.
Here we'll use GeogCS; 6371229 is the radius of the Earth in metres.
cs = GeogCS(6371229)

The Iris coords module turns the latitude list into a coordinate array.
Coords then applies an appropriate standard name and unit to it.
lat_coord = iris.coords.DimCoord(

latitudes, standard_name="latitude", units="degrees", coord_system=cs
)

The above process is repeated for the longitude coordinates.
lon_coord = iris.coords.DimCoord(

longitudes, standard_name="longitude", units="degrees", coord_system=cs
)

Now we add bounds to our latitude and longitude coordinates.
We want simple, contiguous bounds for our regularly-spaced coordinate
points so we use the guess_bounds() method of the coordinate. For more
complex coordinates, we could derive and set the bounds manually.
lat_coord.guess_bounds()
lon_coord.guess_bounds()

Now we input our data array into the cube.
new_cube = iris.cube.Cube(

data,
standard_name="coriolis_parameter",
units="s-1",
dim_coords_and_dims=[(lat_coord, 0), (lon_coord, 1)],

)

Now let's plot our cube, along with coastlines, a title and an
appropriately-labelled colour bar:
ax = plt.axes(projection=ccrs.Orthographic())
ax.coastlines(resolution="10m")
mesh = iplt.pcolormesh(new_cube, cmap="seismic")
tick_levels = [-0.00012, -0.00006, 0.0, 0.00006, 0.00012]
plt.colorbar(

mesh,
orientation="horizontal",
label="s-1",
ticks=tick_levels,
format="%.1e",

(continues on next page)

24 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

)
plt.title("Coriolis frequency")
plt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 3.915 seconds)

2.1.10 Calculating a Custom Statistic

This example shows how to define and use a custom iris.analysis.Aggregator, that provides a new
statistical operator for use with cube aggregation functions such as collapsed(), aggregated_by() or
rolling_window().

In this case, we have a 240-year sequence of yearly average surface temperature over North America, and we want to
calculate in how many years these exceed a certain temperature over a spell of 5 years or more.

import matplotlib.pyplot as plt
import numpy as np

import iris
(continues on next page)

2.1. General 25

Iris, Release 3.0.1

(continued from previous page)

from iris.analysis import Aggregator
import iris.plot as iplt
import iris.quickplot as qplt
from iris.util import rolling_window

Define a function to perform the custom statistical operation.
Note: in order to meet the requirements of iris.analysis.Aggregator, it must
do the calculation over an arbitrary (given) data axis.
def count_spells(data, threshold, axis, spell_length):

"""
Function to calculate the number of points in a sequence where the value
has exceeded a threshold value for at least a certain number of timepoints.

Generalised to operate on multiple time sequences arranged on a specific
axis of a multidimensional array.

Args:

* data (array):
raw data to be compared with value threshold.

* threshold (float):
threshold point for 'significant' datapoints.

* axis (int):
number of the array dimension mapping the time sequences.
(Can also be negative, e.g. '-1' means last dimension)

* spell_length (int):
number of consecutive times at which value > threshold to "count".

"""
if axis < 0:

just cope with negative axis numbers
axis += data.ndim

Threshold the data to find the 'significant' points.
data_hits = data > threshold
Make an array with data values "windowed" along the time axis.
hit_windows = rolling_window(data_hits, window=spell_length, axis=axis)
Find the windows "full of True-s" (along the added 'window axis').
full_windows = np.all(hit_windows, axis=axis + 1)
Count points fulfilling the condition (along the time axis).
spell_point_counts = np.sum(full_windows, axis=axis, dtype=int)
return spell_point_counts

def main():
Load the whole time-sequence as a single cube.
file_path = iris.sample_data_path("E1_north_america.nc")
cube = iris.load_cube(file_path)

Make an aggregator from the user function.
SPELL_COUNT = Aggregator(

"spell_count", count_spells, units_func=lambda units: 1
)

(continues on next page)

26 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

Define the parameters of the test.
threshold_temperature = 280.0
spell_years = 5

Calculate the statistic.
warm_periods = cube.collapsed(

"time",
SPELL_COUNT,
threshold=threshold_temperature,
spell_length=spell_years,

)
warm_periods.rename("Number of 5-year warm spells in 240 years")

Plot the results.
qplt.contourf(warm_periods, cmap="RdYlBu_r")
plt.gca().coastlines()
iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.785 seconds)

2.1.11 Colouring Anomaly Data With Logarithmic Scaling

In this example, we need to plot anomaly data where the values have a “logarithmic” significance – i.e. we want to
give approximately equal ranges of colour between data values of, say, 1 and 10 as between 10 and 100.

As the data range also contains zero, that obviously does not suit a simple logarithmic interpretation. However, values
of less than a certain absolute magnitude may be considered “not significant”, so we put these into a separate “zero
band” which is plotted in white.

To do this, we create a custom value mapping function (normalization) using the matplotlib Norm class mat-
plotlib.colours.SymLogNorm. We use this to make a cell-filled pseudocolour plot with a colorbar.

NOTE: By “pseudocolour”, we mean that each data point is drawn as a “cell” region on the plot, coloured ac-
cording to its data value. This is provided in Iris by the functions iris.plot.pcolor() and iris.plot.
pcolormesh(), which call the underlying matplotlib functions of the same names (i.e. matplotlib.pyplot.pcolor
and matplotlib.pyplot.pcolormesh). See also: http://en.wikipedia.org/wiki/False_color#Pseudocolor.

2.1. General 27

https://matplotlib.org/api/_as_gen/matplotlib.colors.SymLogNorm.html#matplotlib.colors.SymLogNorm
https://matplotlib.org/api/_as_gen/matplotlib.colors.SymLogNorm.html#matplotlib.colors.SymLogNorm
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pcolor
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.pcolormesh
http://en.wikipedia.org/wiki/False_color#Pseudocolor

Iris, Release 3.0.1

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import matplotlib.colors as mcols

import iris
import iris.coord_categorisation
import iris.plot as iplt

def main():
Load a sample air temperatures sequence.
file_path = iris.sample_data_path("E1_north_america.nc")
temperatures = iris.load_cube(file_path)

Create a year-number coordinate from the time information.
iris.coord_categorisation.add_year(temperatures, "time")

Create a sample anomaly field for one chosen year, by extracting that
year and subtracting the time mean.
sample_year = 1982
year_temperature = temperatures.extract(iris.Constraint(year=sample_year))
time_mean = temperatures.collapsed("time", iris.analysis.MEAN)
anomaly = year_temperature - time_mean

Construct a plot title string explaining which years are involved.

(continues on next page)

28 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

years = temperatures.coord("year").points
plot_title = "Temperature anomaly"
plot_title += "\n{} differences from {}-{} average.".format(

sample_year, years[0], years[-1]
)

Define scaling levels for the logarithmic colouring.
minimum_log_level = 0.1
maximum_scale_level = 3.0

Use a standard colour map which varies blue-white-red.
For suitable options, see the 'Diverging colormaps' section in:
http://matplotlib.org/examples/color/colormaps_reference.html
anom_cmap = "bwr"

Create a 'logarithmic' data normalization.
anom_norm = mcols.SymLogNorm(

linthresh=minimum_log_level,
linscale=0,
vmin=-maximum_scale_level,
vmax=maximum_scale_level,

)
Setting "linthresh=minimum_log_level" makes its non-logarithmic
data range equal to our 'zero band'.
Setting "linscale=0" maps the whole zero band to the middle colour value
(i.e. 0.5), which is the neutral point of a "diverging" style colormap.

Create an Axes, specifying the map projection.
plt.axes(projection=ccrs.LambertConformal())

Make a pseudocolour plot using this colour scheme.
mesh = iplt.pcolormesh(anomaly, cmap=anom_cmap, norm=anom_norm)

Add a colourbar, with extensions to show handling of out-of-range values.
bar = plt.colorbar(mesh, orientation="horizontal", extend="both")

Set some suitable fixed "logarithmic" colourbar tick positions.
tick_levels = [-3, -1, -0.3, 0.0, 0.3, 1, 3]
bar.set_ticks(tick_levels)

Modify the tick labels so that the centre one shows "+/-<minumum-level>".
tick_levels[3] = r"\pm{:g}".format(minimum_log_level)
bar.set_ticklabels(tick_levels)

Label the colourbar to show the units.
bar.set_label("[{}, log scale]".format(anomaly.units))

Add coastlines and a title.
plt.gca().coastlines()
plt.title(plot_title)

Display the result.
iplt.show()

if __name__ == "__main__":
main()

2.1. General 29

Iris, Release 3.0.1

Total running time of the script: (0 minutes 0.949 seconds)

2.1.12 Plotting in Different Projections

This example shows how to overlay data and graphics in different projections, demonstrating various features of Iris,
Cartopy and matplotlib.

We wish to overlay two datasets, defined on different rotated-pole grids. To display both together, we make a pseu-
docoloured plot of the first, overlaid with contour lines from the second. We also add some lines and text annotations
drawn in various projections.

We plot these over a specified region, in two different map projections.

•

30 Chapter 2. Gallery

Iris, Release 3.0.1

•

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.plot as iplt

Define a Cartopy 'ordinary' lat-lon coordinate reference system.
crs_latlon = ccrs.PlateCarree()

def make_plot(projection_name, projection_crs):

Create a matplotlib Figure.
plt.figure()

Add a matplotlib Axes, specifying the required display projection.
NOTE: specifying 'projection' (a "cartopy.crs.Projection") makes the
resulting Axes a "cartopy.mpl.geoaxes.GeoAxes", which supports plotting
in different coordinate systems.
ax = plt.axes(projection=projection_crs)

Set display limits to include a set region of latitude * longitude.
(Note: Cartopy-specific).
ax.set_extent((-80.0, 20.0, 10.0, 80.0), crs=crs_latlon)

(continues on next page)

2.1. General 31

Iris, Release 3.0.1

(continued from previous page)

Add coastlines and meridians/parallels (Cartopy-specific).
ax.coastlines(linewidth=0.75, color="navy")
ax.gridlines(crs=crs_latlon, linestyle="-")

Plot the first dataset as a pseudocolour filled plot.
maindata_filepath = iris.sample_data_path("rotated_pole.nc")
main_data = iris.load_cube(maindata_filepath)
NOTE: iplt.pcolormesh calls "pyplot.pcolormesh", passing in a coordinate
system with the 'transform' keyword: This enables the Axes (a cartopy
GeoAxes) to reproject the plot into the display projection.
iplt.pcolormesh(main_data, cmap="RdBu_r")

Overplot the other dataset (which has a different grid), as contours.
overlay_filepath = iris.sample_data_path("space_weather.nc")
overlay_data = iris.load_cube(overlay_filepath, "total electron content")
NOTE: as above, "iris.plot.contour" calls "pyplot.contour" with a
'transform' keyword, enabling Cartopy reprojection.
iplt.contour(

overlay_data, 20, linewidths=2.0, colors="darkgreen", linestyles="-"
)

Draw a margin line, some way in from the border of the 'main' data...
First calculate rectangle corners, 7% in from each corner of the data.
x_coord, y_coord = main_data.coord(axis="x"), main_data.coord(axis="y")
x_start, x_end = np.min(x_coord.points), np.max(x_coord.points)
y_start, y_end = np.min(y_coord.points), np.max(y_coord.points)
margin = 0.07
margin_fractions = np.array([margin, 1.0 - margin])
x_lower, x_upper = x_start + (x_end - x_start) * margin_fractions
y_lower, y_upper = y_start + (y_end - y_start) * margin_fractions
box_x_points = x_lower + (x_upper - x_lower) * np.array([0, 1, 1, 0, 0])
box_y_points = y_lower + (y_upper - y_lower) * np.array([0, 0, 1, 1, 0])
Get the Iris coordinate sytem of the X coordinate (Y should be the same).
cs_data1 = x_coord.coord_system
Construct an equivalent Cartopy coordinate reference system ("crs").
crs_data1 = cs_data1.as_cartopy_crs()
Draw the rectangle in this crs, with matplotlib "pyplot.plot".
NOTE: the 'transform' keyword specifies a non-display coordinate system
for the plot points (as used by the "iris.plot" functions).
plt.plot(

box_x_points,
box_y_points,
transform=crs_data1,
linewidth=2.0,
color="white",
linestyle="--",

)

Mark some particular places with a small circle and a name label...
Define some test points with latitude and longitude coordinates.
city_data = [

("London", 51.5072, 0.1275),
("Halifax, NS", 44.67, -63.61),
("Reykjavik", 64.1333, -21.9333),

]
Place a single marker point and a text annotation at each place.
for name, lat, lon in city_data:

(continues on next page)

32 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

plt.plot(
lon,
lat,
marker="o",
markersize=7.0,
markeredgewidth=2.5,
markerfacecolor="black",
markeredgecolor="white",
transform=crs_latlon,

)
NOTE: the "plt.annotate call" does not have a "transform=" keyword,
so for this one we transform the coordinates with a Cartopy call.
at_x, at_y = ax.projection.transform_point(

lon, lat, src_crs=crs_latlon
)
plt.annotate(

name,
xy=(at_x, at_y),
xytext=(30, 20),
textcoords="offset points",
color="black",
backgroundcolor="white",
size="large",
arrowprops=dict(arrowstyle="->", color="white", linewidth=2.5),

)

Add a title, and display.
plt.title(

"A pseudocolour plot on the {} projection,\n"
"with overlaid contours.".format(projection_name)

)
iplt.show()

def main():
Demonstrate with two different display projections.
make_plot("Equidistant Cylindrical", ccrs.PlateCarree())
make_plot("North Polar Stereographic", ccrs.NorthPolarStereo())

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.907 seconds)

2.1.13 Loading a Cube From a Custom File Format

This example shows how a custom text file can be loaded using the standard Iris load mechanism.

The first stage in the process is to define an Iris FormatSpecification for the file format. To create a format
specification we need to define the following:

• format_name - Some text that describes the format specification we are creating

• file_element - FileElement object describing the element which identifies this FormatSpecification.

Possible values are:

2.1. General 33

Iris, Release 3.0.1

iris.io.format_picker.MagicNumber(n, o) The n bytes from the file at offset o.

iris.io.format_picker.FileExtension() The file’s extension.

iris.io.format_picker.LeadingLine() The first line of the file.

• file_element_value - The value that the file_element should take if a file matches this FormatSpecification

• handler (optional) - A generator function that will be called when the file specification has been identified.
This function is provided by the user and provides the means to parse the whole file. If no handler function is
provided, then identification is still possible without any handling.

The handler function must define the following arguments:

– list of filenames to process

– callback function - An optional function to filter/alter the Iris cubes returned

The handler function must be defined as generator which yields each cube as they are produced.

• priority (optional) - Integer giving a priority for considering this specification where higher priority means
sooner consideration

In the following example, the function load_NAME_III() has been defined to handle the loading of the raw data
from the custom file format. This function is called from NAME_to_cube() which uses this data to create and yield
Iris cubes.

In the main() function the filenames are loaded via the iris.load_cube function which automatically invokes
the FormatSpecification we defined. The cube returned from the load function is then used to produce a plot.

34 Chapter 2. Gallery

Iris, Release 3.0.1

import datetime

from cf_units import Unit, CALENDAR_GREGORIAN
import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.coords as icoords
import iris.coord_systems as icoord_systems
import iris.fileformats
import iris.io.format_picker as format_picker
import iris.plot as iplt

UTC_format = "%H%M%Z %d/%m/%Y"

FLOAT_HEADERS = [
"X grid origin",
"Y grid origin",
"X grid resolution",
"Y grid resolution",

]
INT_HEADERS = ["X grid size", "Y grid size", "Number of fields"]
DATE_HEADERS = ["Run time", "Start of release", "End of release"]
COLUMN_NAMES = [

"species_category",
"species",
"cell_measure",
"quantity",
"unit",
"z_level",
"time",

]

def load_NAME_III(filename):
"""
Loads the Met Office's NAME III grid output files returning headers, column
definitions and data arrays as 3 separate lists.

"""

Loading a file gives a generator of lines which can be progressed using
the next() function. This will come in handy as we wish to progress
through the file line by line.
with open(filename) as file_handle:

Define a dictionary which can hold the header metadata for this file.
headers = {}

Skip the NAME header of the file which looks something like
'NAME III (version X.X.X)'.
next(file_handle)

Read the next 16 lines of header information, putting the form
"header name: header value" into a dictionary.
for _ in range(16):

header_name, header_value = next(file_handle).split(":")

(continues on next page)

2.1. General 35

Iris, Release 3.0.1

(continued from previous page)

Strip off any spurious space characters in the header name and
value.
header_name = header_name.strip()
header_value = header_value.strip()

Cast some headers into floats or integers if they match a given
header name.
if header_name in FLOAT_HEADERS:

header_value = float(header_value)
elif header_name in INT_HEADERS:

header_value = int(header_value)
elif header_name in DATE_HEADERS:

convert the time to python datetimes
header_value = datetime.datetime.strptime(

header_value, UTC_format
)

headers[header_name] = header_value

Skip the next blank line in the file.
next(file_handle)

Read the next 7 lines of column definitions.
column_headings = {}
for column_header_name in COLUMN_NAMES:

column_headings[column_header_name] = [
col.strip() for col in next(file_handle).split(",")

][:-1]

Convert the time to python datetimes.
new_time_column_header = []
for i, t in enumerate(column_headings["time"]):

The first 4 columns aren't time at all, so don't convert them to
datetimes.
if i >= 4:

t = datetime.datetime.strptime(t, UTC_format)
new_time_column_header.append(t)

column_headings["time"] = new_time_column_header

Skip the blank line after the column headers.
next(file_handle)

Make a list of data arrays to hold the data for each column.
data_shape = (headers["Y grid size"], headers["X grid size"])
data_arrays = [

np.zeros(data_shape, dtype=np.float32)
for i in range(headers["Number of fields"])

]

Iterate over the remaining lines which represent the data in a column
form.
for line in file_handle:

Split the line by comma, removing the last empty column caused by
the trailing comma.
vals = line.split(",")[:-1]

(continues on next page)

36 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

Cast the x and y grid positions to floats and convert them to
zero based indices (the numbers are 1 based grid positions where
0.5 represents half a grid point.)
x = int(float(vals[0]) - 1.5)
y = int(float(vals[1]) - 1.5)

Populate the data arrays (i.e. all columns but the leading 4).
for i, data_array in enumerate(data_arrays):

data_array[y, x] = float(vals[i + 4])

return headers, column_headings, data_arrays

def NAME_to_cube(filenames, callback):
"""
Returns a generator of cubes given a list of filenames and a callback.
"""

for filename in filenames:
header, column_headings, data_arrays = load_NAME_III(filename)

for i, data_array in enumerate(data_arrays):
turn the dictionary of column headers with a list of header
information for each field into a dictionary of headers for just
this field. Ignore the first 4 columns of grid position (data was
located with the data array).
field_headings = dict(

(k, v[i + 4]) for k, v in column_headings.items()
)

make an cube
cube = iris.cube.Cube(data_array)

define the name and unit
name = "%s %s" % (

field_headings["species"],
field_headings["quantity"],

)
name = name.upper().replace(" ", "_")
cube.rename(name)
Some units are badly encoded in the file, fix this by putting a
space in between. (if gs is not found, then the string will be
returned unchanged)
cube.units = field_headings["unit"].replace("gs", "g s")

define and add the singular coordinates of the field (flight
level, time etc.)
cube.add_aux_coord(

icoords.AuxCoord(
field_headings["z_level"],
long_name="flight_level",
units="1",

)
)

define the time unit and use it to serialise the datetime for the
time coordinate

(continues on next page)

2.1. General 37

Iris, Release 3.0.1

(continued from previous page)

time_unit = Unit("hours since epoch", calendar=CALENDAR_GREGORIAN)
time_coord = icoords.AuxCoord(

time_unit.date2num(field_headings["time"]),
standard_name="time",
units=time_unit,

)
cube.add_aux_coord(time_coord)

build a coordinate system which can be referenced by latitude and
longitude coordinates
lat_lon_coord_system = icoord_systems.GeogCS(6371229)

build regular latitude and longitude coordinates which have
bounds
start = header["X grid origin"] + header["X grid resolution"]
step = header["X grid resolution"]
count = header["X grid size"]
pts = start + np.arange(count, dtype=np.float32) * step
lon_coord = icoords.DimCoord(

pts,
standard_name="longitude",
units="degrees",
coord_system=lat_lon_coord_system,

)
lon_coord.guess_bounds()

start = header["Y grid origin"] + header["Y grid resolution"]
step = header["Y grid resolution"]
count = header["Y grid size"]
pts = start + np.arange(count, dtype=np.float32) * step
lat_coord = icoords.DimCoord(

pts,
standard_name="latitude",
units="degrees",
coord_system=lat_lon_coord_system,

)
lat_coord.guess_bounds()

add the latitude and longitude coordinates to the cube, with
mappings to data dimensions
cube.add_dim_coord(lat_coord, 0)
cube.add_dim_coord(lon_coord, 1)

implement standard iris callback capability. Although callbacks
are not used in this example, the standard mechanism for a custom
loader to implement a callback is shown:
cube = iris.io.run_callback(

callback, cube, [header, field_headings, data_array], filename
)

yield the cube created (the loop will continue when the next()
element is requested)
yield cube

Create a format_picker specification of the NAME file format giving it a
priority greater than the built in NAME loader.

(continues on next page)

38 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

_NAME_III_spec = format_picker.FormatSpecification(
"Name III",
format_picker.LeadingLine(),
lambda line: line.startswith(b"NAME III"),
NAME_to_cube,
priority=6,

)

Register the NAME loader with iris
iris.fileformats.FORMAT_AGENT.add_spec(_NAME_III_spec)

| Using the new loader |

def main():
fname = iris.sample_data_path("NAME_output.txt")

boundary_volc_ash_constraint = iris.Constraint(
"VOLCANIC_ASH_AIR_CONCENTRATION", flight_level="From FL000 - FL200"

)

Callback shown as None to illustrate where a cube-level callback function
would be used if required
cube = iris.load_cube(fname, boundary_volc_ash_constraint, callback=None)

draw contour levels for the data (the top level is just a catch-all)
levels = (0.0002, 0.002, 0.004, 1e10)
cs = iplt.contourf(

cube,
levels=levels,
colors=("#80ffff", "#939598", "#e00404"),

)

draw a black outline at the lowest contour to highlight affected areas
iplt.contour(cube, levels=(levels[0], 100), colors="black")

set an extent and a background image for the map
ax = plt.gca()
ax.set_extent((-90, 20, 20, 75))
ax.stock_img("ne_shaded")

make a legend, with custom labels, for the coloured contour set
artists, _ = cs.legend_elements()
labels = [

r"$%s < x \leq %s$" % (levels[0], levels[1]),
r"$%s < x \leq %s$" % (levels[1], levels[2]),
r"$x > %s$" % levels[2],

]
ax.legend(

artists, labels, title="Ash concentration / g m-3", loc="upper left"
)

time = cube.coord("time")
time_date = time.units.num2date(time.points[0]).strftime(UTC_format)

(continues on next page)

2.1. General 39

Iris, Release 3.0.1

(continued from previous page)

plt.title("Volcanic ash concentration forecast\nvalid at %s" % time_date)

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.866 seconds)

2.2 Meteorology

2.2.1 Ionosphere Space Weather

This space weather example plots a filled contour of rotated pole point data with a shaded relief image underlay. The
plot shows aggregated vertical electron content in the ionosphere.

The plot exhibits an interesting outline effect due to excluding data values below a certain threshold.

import matplotlib.pyplot as plt
import numpy.ma as ma

(continues on next page)

40 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
Load the "total electron content" cube.
filename = iris.sample_data_path("space_weather.nc")
cube = iris.load_cube(filename, "total electron content")

Explicitly mask negative electron content.
cube.data = ma.masked_less(cube.data, 0)

Plot the cube using one hundred colour levels.
qplt.contourf(cube, 100)
plt.title("Total Electron Content")
plt.xlabel("longitude / degrees")
plt.ylabel("latitude / degrees")
plt.gca().stock_img()
plt.gca().coastlines()

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 3.108 seconds)

2.2.2 Hovmoller Diagram of Monthly Surface Temperature

This example demonstrates the creation of a Hovmoller diagram with fine control over plot ticks and labels. The data
comes from the Met Office OSTIA project and has been pre-processed to calculate the monthly mean sea surface
temperature.

2.2. Meteorology 41

Iris, Release 3.0.1

import matplotlib.dates as mdates
import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
load a single cube of surface temperature between +/- 5 latitude
fname = iris.sample_data_path("ostia_monthly.nc")
cube = iris.load_cube(

fname,
iris.Constraint("surface_temperature", latitude=lambda v: -5 < v < 5),

)

Take the mean over latitude
cube = cube.collapsed("latitude", iris.analysis.MEAN)

Now that we have our data in a nice way, lets create the plot
contour with 20 levels
qplt.contourf(cube, 20)

Put a custom label on the y axis
plt.ylabel("Time / years")

(continues on next page)

42 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

Stop matplotlib providing clever axes range padding
plt.axis("tight")

As we are plotting annual variability, put years as the y ticks
plt.gca().yaxis.set_major_locator(mdates.YearLocator())

And format the ticks to just show the year
plt.gca().yaxis.set_major_formatter(mdates.DateFormatter("%Y"))

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.640 seconds)

2.2.3 Plotting Wind Direction Using Quiver

This example demonstrates using quiver to plot wind speed contours and wind direction arrows from wind vector
component input data. The vector components are co-located in space in this case.

For the second plot, the data used for the arrows is normalised to produce arrows with a uniform size on the plot.

•

2.2. Meteorology 43

Iris, Release 3.0.1

•

import cartopy.crs as ccrs
import cartopy.feature as cfeat
import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.coord_categorisation
import iris.quickplot as qplt

def main():
Load the u and v components of wind from a pp file
infile = iris.sample_data_path("wind_speed_lake_victoria.pp")

uwind = iris.load_cube(infile, "x_wind")
vwind = iris.load_cube(infile, "y_wind")

ulon = uwind.coord("longitude")
vlon = vwind.coord("longitude")

The longitude points go from 180 to 540, so subtract 360 from them
ulon.points = ulon.points - 360.0
vlon.points = vlon.points - 360.0

Create a cube containing the wind speed
windspeed = (uwind ** 2 + vwind ** 2) ** 0.5
windspeed.rename("windspeed")

(continues on next page)

44 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

x = ulon.points
y = uwind.coord("latitude").points
u = uwind.data
v = vwind.data

Set up axes to show the lake
lakes = cfeat.NaturalEarthFeature(

"physical", "lakes", "50m", facecolor="none"
)

plt.figure()
ax = plt.axes(projection=ccrs.PlateCarree())
ax.add_feature(lakes)

Get the coordinate reference system used by the data
transform = ulon.coord_system.as_cartopy_projection()

Plot the wind speed as a contour plot
qplt.contourf(windspeed, 20)

Add arrows to show the wind vectors
plt.quiver(x, y, u, v, pivot="middle", transform=transform)

plt.title("Wind speed over Lake Victoria")
qplt.show()

Normalise the data for uniform arrow size
u_norm = u / np.sqrt(u ** 2.0 + v ** 2.0)
v_norm = v / np.sqrt(u ** 2.0 + v ** 2.0)

plt.figure()
ax = plt.axes(projection=ccrs.PlateCarree())
ax.add_feature(lakes)

qplt.contourf(windspeed, 20)

plt.quiver(x, y, u_norm, v_norm, pivot="middle", transform=transform)

plt.title("Wind speed over Lake Victoria")
qplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.208 seconds)

2.2. Meteorology 45

Iris, Release 3.0.1

2.2.4 Deriving Exner Pressure and Air Temperature

This example shows some processing of cubes in order to derive further related cubes; in this case the derived cubes
are Exner pressure and air temperature which are calculated by combining air pressure, air potential temperature and
specific humidity. Finally, the two new cubes are presented side-by-side in a plot.

import matplotlib.pyplot as plt
import matplotlib.ticker

import iris
import iris.coords as coords
import iris.iterate
import iris.plot as iplt
import iris.quickplot as qplt

def limit_colorbar_ticks(contour_object):
"""
Takes a contour object which has an associated colorbar and limits the
number of ticks on the colorbar to 4.

"""
Under Matplotlib v1.2.x the colorbar attribute of a contour object is
a tuple containing the colorbar and an axes object, whereas under
Matplotlib v1.3.x it is simply the colorbar.
try:

colorbar = contour_object.colorbar[0]
except (AttributeError, TypeError):

colorbar = contour_object.colorbar

colorbar.locator = matplotlib.ticker.MaxNLocator(4)
colorbar.update_ticks()

def main():

(continues on next page)

46 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

fname = iris.sample_data_path("colpex.pp")

The list of phenomena of interest
phenomena = ["air_potential_temperature", "air_pressure"]

Define the constraint on standard name and model level
constraints = [

iris.Constraint(phenom, model_level_number=1) for phenom in phenomena
]

air_potential_temperature, air_pressure = iris.load_cubes(
fname, constraints

)

Define a coordinate which represents 1000 hPa
p0 = coords.AuxCoord(1000, long_name="P0", units="hPa")
Convert reference pressure 'p0' into the same units as 'air_pressure'
p0.convert_units(air_pressure.units)

Calculate Exner pressure
exner_pressure = (air_pressure / p0) ** (287.05 / 1005.0)
Set the name (the unit is scalar)
exner_pressure.rename("exner_pressure")

Calculate air_temp
air_temperature = exner_pressure * air_potential_temperature
Set the name (the unit is K)
air_temperature.rename("air_temperature")

Now create an iterator which will give us lat lon slices of
exner pressure and air temperature in the form
(exner_slice, air_temp_slice).
lat_lon_slice_pairs = iris.iterate.izip(

exner_pressure,
air_temperature,
coords=["grid_latitude", "grid_longitude"],

)

For the purposes of this example, we only want to demonstrate the first
plot.
lat_lon_slice_pairs = [next(lat_lon_slice_pairs)]

plt.figure(figsize=(8, 4))
for exner_slice, air_temp_slice in lat_lon_slice_pairs:

plt.subplot(121)
cont = qplt.contourf(exner_slice)

The default colorbar has a few too many ticks on it, causing text to
overlap. Therefore, limit the number of ticks.
limit_colorbar_ticks(cont)

plt.subplot(122)
cont = qplt.contourf(air_temp_slice)
limit_colorbar_ticks(cont)
iplt.show()

(continues on next page)

2.2. Meteorology 47

Iris, Release 3.0.1

(continued from previous page)

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 5.274 seconds)

2.2.5 Global Average Annual Temperature Plot

Produces a time-series plot of North American temperature forecasts for 2 different emission scenarios. Constraining
data to a limited spatial area also features in this example.

The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were
derived using the IMAGE Integrated Assessment Model (Johns et al. 2011; Lowe et al. 2009).

References

Johns T.C., et al. (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model
experiment. Climate Dynamics, Vol 37, No. 9-10, doi:10.1007/s00382-011-1005-5.

Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden,
2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21,
doi:10.1029/2009EO210001.

See also:

Further details on the aggregation functionality being used in this example can be found in Cube Statistics.

48 Chapter 2. Gallery

Iris, Release 3.0.1

import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.analysis.cartography
import iris.plot as iplt
import iris.quickplot as qplt

def main():
Load data into three Cubes, one for each set of NetCDF files.
e1 = iris.load_cube(iris.sample_data_path("E1_north_america.nc"))

a1b = iris.load_cube(iris.sample_data_path("A1B_north_america.nc"))

load in the global pre-industrial mean temperature, and limit the domain
to the same North American region that e1 and a1b are at.
north_america = iris.Constraint(

longitude=lambda v: 225 <= v <= 315, latitude=lambda v: 15 <= v <= 60
)
pre_industrial = iris.load_cube(

iris.sample_data_path("pre-industrial.pp"), north_america
)

Generate area-weights array. As e1 and a1b are on the same grid we can

(continues on next page)

2.2. Meteorology 49

Iris, Release 3.0.1

(continued from previous page)

do this just once and re-use. This method requires bounds on lat/lon
coords, so let's add some in sensible locations using the "guess_bounds"
method.
e1.coord("latitude").guess_bounds()
e1.coord("longitude").guess_bounds()
e1_grid_areas = iris.analysis.cartography.area_weights(e1)
pre_industrial.coord("latitude").guess_bounds()
pre_industrial.coord("longitude").guess_bounds()
pre_grid_areas = iris.analysis.cartography.area_weights(pre_industrial)

Perform the area-weighted mean for each of the datasets using the
computed grid-box areas.
pre_industrial_mean = pre_industrial.collapsed(

["latitude", "longitude"], iris.analysis.MEAN, weights=pre_grid_areas
)
e1_mean = e1.collapsed(

["latitude", "longitude"], iris.analysis.MEAN, weights=e1_grid_areas
)
a1b_mean = a1b.collapsed(

["latitude", "longitude"], iris.analysis.MEAN, weights=e1_grid_areas
)

Plot the datasets
qplt.plot(e1_mean, label="E1 scenario", lw=1.5, color="blue")
qplt.plot(a1b_mean, label="A1B-Image scenario", lw=1.5, color="red")

Draw a horizontal line showing the pre-industrial mean
plt.axhline(

y=pre_industrial_mean.data,
color="gray",
linestyle="dashed",
label="pre-industrial",
lw=1.5,

)

Constrain the period 1860-1999 and extract the observed data from a1b
constraint = iris.Constraint(

time=lambda cell: 1860 <= cell.point.year <= 1999
)
observed = a1b_mean.extract(constraint)

Assert that this data set is the same as the e1 scenario:
they share data up to the 1999 cut off.
assert np.all(np.isclose(observed.data, e1_mean.extract(constraint).data))

Plot the observed data
qplt.plot(observed, label="observed", color="black", lw=1.5)

Add a legend and title
plt.legend(loc="upper left")
plt.title("North American mean air temperature", fontsize=18)

plt.xlabel("Time / year")
plt.grid()
iplt.show()

(continues on next page)

50 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 1.045 seconds)

2.2.6 Seasonal Ensemble Model Plots

This example demonstrates the loading of a lagged ensemble dataset from the GloSea4 model, which is then used to
produce two types of plot:

• The first shows the “postage stamp” style image with an array of 14 images, one for each ensemble member
with a shared colorbar. (The missing image in this example represents ensemble member number 6 which was
a failed run)

• The second plot shows the data limited to a region of interest, in this case a region defined for forecasting ENSO
(El Nino-Southern Oscillation), which, for the purposes of this example, has had the ensemble mean subtracted
from each ensemble member to give an anomaly surface temperature. In practice a better approach would be to
take the climatological mean, calibrated to the model, from each ensemble member.

•

2.2. Meteorology 51

Iris, Release 3.0.1

•

import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.plot as iplt

def realization_metadata(cube, field, fname):
"""
A function which modifies the cube's metadata to add a "realization"
(ensemble member) coordinate from the filename if one doesn't already exist
in the cube.

"""
add an ensemble member coordinate if one doesn't already exist
if not cube.coords("realization"):

the ensemble member is encoded in the filename as *_???.pp where ???
is the ensemble member
realization_number = fname[-6:-3]

import iris.coords

realization_coord = iris.coords.AuxCoord(
np.int32(realization_number), "realization", units="1"

)
cube.add_aux_coord(realization_coord)

(continues on next page)

52 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

def main():
extract surface temperature cubes which have an ensemble member
coordinate, adding appropriate lagged ensemble metadata
surface_temp = iris.load_cube(

iris.sample_data_path("GloSea4", "ensemble_???.pp"),
iris.Constraint("surface_temperature", realization=lambda value: True),
callback=realization_metadata,

)

Plot #1: Ensemble postage stamps

for the purposes of this example, take the last time element of the cube
last_timestep = surface_temp[:, -1, :, :]

Make 50 evenly spaced levels which span the dataset
contour_levels = np.linspace(

np.min(last_timestep.data), np.max(last_timestep.data), 50
)

Create a wider than normal figure to support our many plots
plt.figure(figsize=(12, 6), dpi=100)

Also manually adjust the spacings which are used when creating subplots
plt.gcf().subplots_adjust(

hspace=0.05,
wspace=0.05,
top=0.95,
bottom=0.05,
left=0.075,
right=0.925,

)

iterate over all possible latitude longitude slices
for cube in last_timestep.slices(["latitude", "longitude"]):

get the ensemble member number from the ensemble coordinate
ens_member = cube.coord("realization").points[0]

plot the data in a 4x4 grid, with each plot's position in the grid
being determined by ensemble member number the special case for the
13th ensemble member is to have the plot at the bottom right
if ens_member == 13:

plt.subplot(4, 4, 16)
else:

plt.subplot(4, 4, ens_member + 1)

cf = iplt.contourf(cube, contour_levels)

add coastlines
plt.gca().coastlines()

make an axes to put the shared colorbar in
colorbar_axes = plt.gcf().add_axes([0.35, 0.1, 0.3, 0.05])
colorbar = plt.colorbar(cf, colorbar_axes, orientation="horizontal")

(continues on next page)

2.2. Meteorology 53

Iris, Release 3.0.1

(continued from previous page)

colorbar.set_label("%s" % last_timestep.units)

limit the colorbar to 8 tick marks
import matplotlib.ticker

colorbar.locator = matplotlib.ticker.MaxNLocator(8)
colorbar.update_ticks()

get the time for the entire plot
time_coord = last_timestep.coord("time")
time = time_coord.units.num2date(time_coord.bounds[0, 0])

set a global title for the postage stamps with the date formated by
"monthname year"
plt.suptitle(

"Surface temperature ensemble forecasts for %s"
% (time.strftime("%B %Y"),)

)

iplt.show()

Plot #2: ENSO plumes

Nino 3.4 lies between: 170W and 120W, 5N and 5S, so define a constraint
which matches this
nino_3_4_constraint = iris.Constraint(

longitude=lambda v: -170 + 360 <= v <= -120 + 360,
latitude=lambda v: -5 <= v <= 5,

)

nino_cube = surface_temp.extract(nino_3_4_constraint)

Subsetting a circular longitude coordinate always results in a circular
coordinate, so set the coordinate to be non-circular
nino_cube.coord("longitude").circular = False

Calculate the horizontal mean for the nino region
mean = nino_cube.collapsed(["latitude", "longitude"], iris.analysis.MEAN)

Calculate the ensemble mean of the horizontal mean. To do this, remove
the "forecast_period" and "forecast_reference_time" coordinates which
span both "relalization" and "time".
mean.remove_coord("forecast_reference_time")
mean.remove_coord("forecast_period")
ensemble_mean = mean.collapsed("realization", iris.analysis.MEAN)

take the ensemble mean from each ensemble member
mean -= ensemble_mean.data

plt.figure()

for ensemble_member in mean.slices(["time"]):
draw each ensemble member as a dashed line in black
iplt.plot(ensemble_member, "--k")

(continues on next page)

54 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

plt.title("Mean temperature anomaly for ENSO 3.4 region")
plt.xlabel("Time")
plt.ylabel("Temperature anomaly / K")

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 40.414 seconds)

2.2.7 Global Average Annual Temperature Maps

Produces maps of global temperature forecasts from the A1B and E1 scenarios.

The data used comes from the HadGEM2-AO model simulations for the A1B and E1 scenarios, both of which were
derived using the IMAGE Integrated Assessment Model (Johns et al. 2011; Lowe et al. 2009).

References

Johns T.C., et al. (2011) Climate change under aggressive mitigation: the ENSEMBLES multi-model
experiment. Climate Dynamics, Vol 37, No. 9-10, doi:10.1007/s00382-011-1005-5.

Lowe J.A., C.D. Hewitt, D.P. Van Vuuren, T.C. Johns, E. Stehfest, J-F. Royer, and P. van der Linden,
2009. New Study For Climate Modeling, Analyses, and Scenarios. Eos Trans. AGU, Vol 90, No. 21,
doi:10.1029/2009EO210001.

import os.path

import matplotlib.pyplot as plt
import numpy as np

import iris
import iris.coords as coords
import iris.plot as iplt

(continues on next page)

2.2. Meteorology 55

Iris, Release 3.0.1

(continued from previous page)

def cop_metadata_callback(cube, field, filename):
"""
A function which adds an "Experiment" coordinate which comes from the
filename.
"""

Extract the experiment name (such as a1b or e1) from the filename (in
this case it is just the parent folder's name)
containing_folder = os.path.dirname(filename)
experiment_label = os.path.basename(containing_folder)

Create a coordinate with the experiment label in it
exp_coord = coords.AuxCoord(

experiment_label, long_name="Experiment", units="no_unit"
)

and add it to the cube
cube.add_aux_coord(exp_coord)

def main():
Load e1 and a1 using the callback to update the metadata
e1 = iris.load_cube(

iris.sample_data_path("E1.2098.pp"), callback=cop_metadata_callback
)
a1b = iris.load_cube(

iris.sample_data_path("A1B.2098.pp"), callback=cop_metadata_callback
)

Load the global average data and add an 'Experiment' coord it
global_avg = iris.load_cube(iris.sample_data_path("pre-industrial.pp"))

Define evenly spaced contour levels: -2.5, -1.5, ... 15.5, 16.5 with the
specific colours
levels = np.arange(20) - 2.5
red = (

np.array(
[

0,
0,
221,
239,
229,
217,
239,
234,
228,
222,
205,
196,
161,
137,
116,
89,
77,

(continues on next page)

56 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

60,
51,

]
)
/ 256.0

)
green = (

np.array(
[

16,
217,
242,
243,
235,
225,
190,
160,
128,
87,
72,
59,
33,
21,
29,
30,
30,
29,
26,

]
)
/ 256.0

)
blue = (

np.array(
[

255,
255,
243,
169,
99,
51,
63,
37,
39,
21,
27,
23,
22,
26,
29,
28,
27,
25,
22,

]
)
/ 256.0

(continues on next page)

2.2. Meteorology 57

Iris, Release 3.0.1

(continued from previous page)

)

Put those colours into an array which can be passed to contourf as the
specific colours for each level
colors = np.array([red, green, blue]).T

Subtract the global

Iterate over each latitude longitude slice for both e1 and a1b scenarios
simultaneously
for e1_slice, a1b_slice in zip(

e1.slices(["latitude", "longitude"]),
a1b.slices(["latitude", "longitude"]),

):

time_coord = a1b_slice.coord("time")

Calculate the difference from the mean
delta_e1 = e1_slice - global_avg
delta_a1b = a1b_slice - global_avg

Make a wider than normal figure to house two maps side-by-side
fig = plt.figure(figsize=(12, 5))

Get the time datetime from the coordinate
time = time_coord.units.num2date(time_coord.points[0])
Set a title for the entire figure, giving the time in a nice format
of "MonthName Year". Also, set the y value for the title so that it
is not tight to the top of the plot.
fig.suptitle(

"Annual Temperature Predictions for " + time.strftime("%Y"),
y=0.9,
fontsize=18,

)

Add the first subplot showing the E1 scenario
plt.subplot(121)
plt.title("HadGEM2 E1 Scenario", fontsize=10)
iplt.contourf(delta_e1, levels, colors=colors, extend="both")
plt.gca().coastlines()
get the current axes' subplot for use later on
plt1_ax = plt.gca()

Add the second subplot showing the A1B scenario
plt.subplot(122)
plt.title("HadGEM2 A1B-Image Scenario", fontsize=10)
contour_result = iplt.contourf(

delta_a1b, levels, colors=colors, extend="both"
)
plt.gca().coastlines()
get the current axes' subplot for use later on
plt2_ax = plt.gca()

Now add a colourbar who's leftmost point is the same as the leftmost
point of the left hand plot and rightmost point is the rightmost
point of the right hand plot

(continues on next page)

58 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

Get the positions of the 2nd plot and the left position of the 1st
plot
left, bottom, width, height = plt2_ax.get_position().bounds
first_plot_left = plt1_ax.get_position().bounds[0]

the width of the colorbar should now be simple
width = left - first_plot_left + width

Add axes to the figure, to place the colour bar
colorbar_axes = fig.add_axes([first_plot_left, 0.18, width, 0.03])

Add the colour bar
cbar = plt.colorbar(

contour_result, colorbar_axes, orientation="horizontal"
)

Label the colour bar and add ticks
cbar.set_label(e1_slice.units)
cbar.ax.tick_params(length=0)

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 3.233 seconds)

2.3 Oceanography

2.3.1 Tri-Polar Grid Projected Plotting

This example demonstrates cell plots of data on the semi-structured ORCA2 model grid.

First, the data is projected into the PlateCarree coordinate reference system.

Second four pcolormesh plots are created from this projected dataset, using different projections for the output image.

2.3. Oceanography 59

Iris, Release 3.0.1

•

60 Chapter 2. Gallery

Iris, Release 3.0.1

•

2.3. Oceanography 61

Iris, Release 3.0.1

•

62 Chapter 2. Gallery

Iris, Release 3.0.1

•

import cartopy.crs as ccrs
import matplotlib.pyplot as plt

import iris
import iris.analysis.cartography
import iris.plot as iplt
import iris.quickplot as qplt

def main():
Load data
filepath = iris.sample_data_path("orca2_votemper.nc")
cube = iris.load_cube(filepath)

Choose plot projections
projections = {}
projections["Mollweide"] = ccrs.Mollweide()
projections["PlateCarree"] = ccrs.PlateCarree()
projections["NorthPolarStereo"] = ccrs.NorthPolarStereo()
projections["Orthographic"] = ccrs.Orthographic(

central_longitude=-90, central_latitude=45
)

pcarree = projections["PlateCarree"]
Transform cube to target projection
new_cube, extent = iris.analysis.cartography.project(

cube, pcarree, nx=400, ny=200
(continues on next page)

2.3. Oceanography 63

Iris, Release 3.0.1

(continued from previous page)

)

Plot data in each projection
for name in sorted(projections):

fig = plt.figure()
fig.suptitle("ORCA2 Data Projected to {}".format(name))
Set up axes and title
ax = plt.subplot(projection=projections[name])
Set limits
ax.set_global()
plot with Iris quickplot pcolormesh
qplt.pcolormesh(new_cube)
Draw coastlines
ax.coastlines()

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 2.208 seconds)

2.3.2 Load a Time Series of Data From the NEMO Model

This example demonstrates how to load multiple files containing data output by the NEMO model and combine them
into a time series in a single cube. The different time dimensions in these files can prevent Iris from concatenating
them without the intervention shown here.

64 Chapter 2. Gallery

Iris, Release 3.0.1

from __future__ import unicode_literals

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt
from iris.util import promote_aux_coord_to_dim_coord

def main():
Load the three files of sample NEMO data.
fname = iris.sample_data_path("NEMO/nemo_1m_*.nc")
cubes = iris.load(fname)

Some attributes are unique to each file and must be blanked
to allow concatenation.
differing_attrs = ["file_name", "name", "timeStamp", "TimeStamp"]
for cube in cubes:

for attribute in differing_attrs:
cube.attributes[attribute] = ""

The cubes still cannot be concatenated because their time dimension is
time_counter rather than time. time needs to be promoted to allow
concatenation.

(continues on next page)

2.3. Oceanography 65

Iris, Release 3.0.1

(continued from previous page)

for cube in cubes:
promote_aux_coord_to_dim_coord(cube, "time")

The cubes can now be concatenated into a single time series.
cube = cubes.concatenate_cube()

Generate a time series plot of a single point
plt.figure()
y_point_index = 100
x_point_index = 100
qplt.plot(cube[:, y_point_index, x_point_index], "o-")

Include the point's position in the plot's title
lat_point = cube.coord("latitude").points[y_point_index, x_point_index]
lat_string = "{:.3f}\u00B0 {}".format(

abs(lat_point), "N" if lat_point > 0.0 else "S"
)
lon_point = cube.coord("longitude").points[y_point_index, x_point_index]
lon_string = "{:.3f}\u00B0 {}".format(

abs(lon_point), "E" if lon_point > 0.0 else "W"
)
plt.title(

"{} at {} {}".format(
cube.long_name.capitalize(), lat_string, lon_string

)
)

iplt.show()

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 0.667 seconds)

2.3.3 Oceanographic Profiles and T-S Diagrams

This example demonstrates how to plot vertical profiles of different variables in the same axes, and how to make
a scatter plot of two variables. There is an oceanographic theme but the same techniques are equally applicable to
atmospheric or other kinds of data.

The data used are profiles of potential temperature and salinity in the Equatorial and South Atlantic, output from an
ocean model.

The y-axis of the first plot produced will be automatically inverted due to the presence of the attribute positive=down
on the depth coordinate. This means depth values intuitively increase downward on the y-axis.

66 Chapter 2. Gallery

Iris, Release 3.0.1

•

2.3. Oceanography 67

Iris, Release 3.0.1

•

import matplotlib.pyplot as plt

import iris
import iris.iterate
import iris.plot as iplt

def main():
Load the gridded temperature and salinity data.
fname = iris.sample_data_path("atlantic_profiles.nc")
cubes = iris.load(fname)
(theta,) = cubes.extract("sea_water_potential_temperature")
(salinity,) = cubes.extract("sea_water_practical_salinity")

Extract profiles of temperature and salinity from a particular point in
the southern portion of the domain, and limit the depth of the profile
to 1000m.

(continues on next page)

68 Chapter 2. Gallery

Iris, Release 3.0.1

(continued from previous page)

lon_cons = iris.Constraint(longitude=330.5)
lat_cons = iris.Constraint(latitude=lambda l: -10 < l < -9)
depth_cons = iris.Constraint(depth=lambda d: d <= 1000)
theta_1000m = theta.extract(depth_cons & lon_cons & lat_cons)
salinity_1000m = salinity.extract(depth_cons & lon_cons & lat_cons)

Plot these profiles on the same set of axes. In each case we call plot
with two arguments, the cube followed by the depth coordinate. Putting
them in this order places the depth coordinate on the y-axis.
The first plot is in the default axes. We'll use the same color for the
curve and its axes/tick labels.
plt.figure(figsize=(5, 6))
temperature_color = (0.3, 0.4, 0.5)
ax1 = plt.gca()
iplt.plot(

theta_1000m,
theta_1000m.coord("depth"),
linewidth=2,
color=temperature_color,
alpha=0.75,

)
ax1.set_xlabel("Potential Temperature / K", color=temperature_color)
ax1.set_ylabel("Depth / m")
for ticklabel in ax1.get_xticklabels():

ticklabel.set_color(temperature_color)

To plot salinity in the same axes we use twiny(). We'll use a different
color to identify salinity.
salinity_color = (0.6, 0.1, 0.15)
ax2 = plt.gca().twiny()
iplt.plot(

salinity_1000m,
salinity_1000m.coord("depth"),
linewidth=2,
color=salinity_color,
alpha=0.75,

)
ax2.set_xlabel("Salinity / PSU", color=salinity_color)
for ticklabel in ax2.get_xticklabels():

ticklabel.set_color(salinity_color)
plt.tight_layout()
iplt.show()

Now plot a T-S diagram using scatter. We'll use all the profiles here,
and each point will be coloured according to its depth.
plt.figure(figsize=(6, 6))
depth_values = theta.coord("depth").points
for s, t in iris.iterate.izip(salinity, theta, coords="depth"):

iplt.scatter(s, t, c=depth_values, marker="+", cmap="RdYlBu_r")
ax = plt.gca()
ax.set_xlabel("Salinity / PSU")
ax.set_ylabel("Potential Temperature / K")
cb = plt.colorbar(orientation="horizontal")
cb.set_label("Depth / m")
plt.tight_layout()
iplt.show()

(continues on next page)

2.3. Oceanography 69

Iris, Release 3.0.1

(continued from previous page)

if __name__ == "__main__":
main()

Total running time of the script: (0 minutes 2.482 seconds)

70 Chapter 2. Gallery

CHAPTER

THREE

INTRODUCTION

If you are reading this user guide for the first time it is strongly recommended that you read the user guide fully before
experimenting with your own data files.

Much of the content has supplementary links to the reference documentation; you will not need to follow these links
in order to understand the guide but they may serve as a useful reference for future exploration.

• Iris Data Structures

• Loading Iris Cubes

• Saving Iris Cubes

• Navigating a Cube

• Subsetting a Cube

• Real and Lazy Data

• Plotting a Cube

• Cube Interpolation and Regridding

• Merge and Concatenate

• Cube Statistics

• Cube Maths

• Citing Iris

• Code Maintenance

71

Iris, Release 3.0.1

72 Chapter 3. Introduction

CHAPTER

FOUR

IRIS DATA STRUCTURES

The top level object in Iris is called a cube. A cube contains data and metadata about a phenomenon.

In Iris, a cube is an interpretation of the Climate and Forecast (CF) Metadata Conventions whose purpose is to:

require conforming datasets to contain sufficient metadata that they are self-describing. . . including phys-
ical units if appropriate, and that each value can be located in space (relative to earth-based coordinates)
and time.

Whilst the CF conventions are often mentioned alongside NetCDF, Iris implements several major format importers
which can take files of specific formats and turn them into Iris cubes. Additionally, a framework is provided which
allows users to extend Iris’ import capability to cater for specialist or unimplemented formats.

A single cube describes one and only one phenomenon, always has a name, a unit and an n-dimensional data array to
represents the cube’s phenomenon. In order to locate the data spatially, temporally, or in any other higher-dimensional
space, a collection of coordinates exist on the cube.

4.1 Coordinates

A coordinate is a container to store metadata about some dimension(s) of a cube’s data array and therefore, by defini-
tion, its phenomenon.

• Each coordinate has a name and a unit.

• When a coordinate is added to a cube, the data dimensions that it represents are also provided.

– The shape of a coordinate is always the same as the shape of the associated data dimension(s) on the cube.

– A dimension not explicitly listed signifies that the coordinate is independent of that dimension.

– Each dimension of a coordinate must be mapped to a data dimension. The only coordinates with no
mapping are scalar coordinates.

• Depending on the underlying data that the coordinate is representing, its values may be discrete points or be
bounded to represent interval extents (e.g. temperature at point x vs rainfall accumulation between 0000-1200
hours).

• Coordinates have an attributes dictionary which can hold arbitrary extra metadata, excluding certain restricted
CF names

• More complex coordinates may contain a coordinate system which is necessary to fully interpret the values
contained within the coordinate.

There are two classes of coordinates:

DimCoord

• Numeric

73

Iris, Release 3.0.1

• Monotonic

• Representative of, at most, a single data dimension (1d)

AuxCoord

• May be of any type, including strings

• May represent multiple data dimensions (n-dimensional)

4.2 Cube

A cube consists of:

• a standard name and/or a long name and an appropriate unit

• a data array who’s values are representative of the phenomenon

• a collection of coordinates and associated data dimensions on the cube’s data array, which are split into two
separate lists:

– dimension coordinates - DimCoords which uniquely map to exactly one data dimension, ordered by di-
mension.

– auxiliary coordinates - DimCoords or AuxCoords which map to as many data dimensions as the coordinate
has dimensions.

• an attributes dictionary which, other than some protected CF names, can hold arbitrary extra metadata.

• a list of cell methods to represent operations which have already been applied to the data (e.g. “mean over time”)

• a list of coordinate “factories” used for deriving coordinates from the values of other coordinates in the cube

4.2.1 Cubes in Practice

4.3 A Simple Cube Example

Suppose we have some gridded data which has 24 air temperature readings (in Kelvin) which is located at 4 different
longitudes, 2 different latitudes and 3 different heights. Our data array can be represented pictorially:

74 Chapter 4. Iris Data Structures

Iris, Release 3.0.1

Where dimensions 0, 1, and 2 have lengths 3, 2 and 4 respectively.

The Iris cube to represent this data would consist of:

• a standard name of air_temperature and a unit of kelvin

• a data array of shape (3, 2, 4)

• a coordinate, mapping to dimension 0, consisting of:

– a standard name of height and unit of meters

– an array of length 3 representing the 3 height points

• a coordinate, mapping to dimension 1, consisting of:

– a standard name of latitude and unit of degrees

– an array of length 2 representing the 2 latitude points

– a coordinate system such that the latitude points could be fully located on the globe

• a coordinate, mapping to dimension 2, consisting of:

– a standard name of longitude and unit of degrees

– an array of length 4 representing the 4 longitude points

– a coordinate system such that the longitude points could be fully located on the globe

Pictorially the cube has taken on more information than a simple array:

4.3. A Simple Cube Example 75

Iris, Release 3.0.1

Additionally further information may be optionally attached to the cube. For example, it is possible to attach any of
the following:

• a coordinate, not mapping to any data dimensions, consisting of:

– a standard name of time and unit of days since 2000-01-01 00:00

– a data array of length 1 representing the time that the data array is valid for

• an auxiliary coordinate, mapping to dimensions 1 and 2, consisting of:

– a long name of place name and no unit

– a 2d string array of shape (2, 4) with the names of the 8 places that the lat/lons correspond to

• an auxiliary coordinate “factory”, which can derive its own mapping, consisting of:

– a standard name of height and a unit of feet

– knowledge of how data values for this coordinate can be calculated given the height in meters
coordinate

• a cell method of “mean” over “ensemble” to indicate that the data has been meaned over a collection of “ensem-
bles” (i.e. multiple model runs).

76 Chapter 4. Iris Data Structures

Iris, Release 3.0.1

4.4 Printing a Cube

Every Iris cube can be printed to screen as you will see later in the user guide. It is worth familiarising yourself with
the output as this is the quickest way of inspecting the contents of a cube. Here is the result of printing a real life cube:

air_potential_temperature / (K) (time: 3; model_level_number: 7; grid_latitude:
→˓204; grid_longitude: 187)

Dimension coordinates:
time x - -

→˓ -
model_level_number - x -

→˓ -
grid_latitude - - x

→˓ -
grid_longitude - - -

→˓ x
Auxiliary coordinates:

forecast_period x - -
→˓ -

level_height - x -
→˓ -

sigma - x -
→˓ -

surface_altitude - - x
→˓ x

Derived coordinates:
altitude - x x

→˓ x
Scalar coordinates:

forecast_reference_time: 2009-11-19 04:00:00
Attributes:

STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

Using this output we can deduce that:

• The cube represents air potential temperature.

• There are 4 data dimensions, and the data has a shape of (3, 7, 204, 187)

• The 4 data dimensions are mapped to the time, model_level_number, grid_latitude,
grid_longitude coordinates respectively

• There are three 1d auxiliary coordinates and one 2d auxiliary (surface_altitude)

• There is a single altitude derived coordinate, which spans 3 data dimensions

• There are 7 distinct values in the “model_level_number” coordinate. Similar inferences can be made for the
other dimension coordinates.

• There are 7, not necessarily distinct, values in the level_height coordinate.

• There is a single forecast_reference_time scalar coordinate representing the entire cube.

• The cube has one further attribute relating to the phenomenon. In this case the originating file format, PP,
encodes information in a STASH code which in some cases can be useful for identifying advanced experiment
information relating to the phenomenon.

4.4. Printing a Cube 77

Iris, Release 3.0.1

78 Chapter 4. Iris Data Structures

CHAPTER

FIVE

LOADING IRIS CUBES

To load a single file into a list of Iris cubes the iris.load() function is used:

import iris
filename = '/path/to/file'
cubes = iris.load(filename)

Iris will attempt to return as few cubes as possible by collecting together multiple fields with a shared standard name
into a single multidimensional cube.

The iris.load() function automatically recognises the format of the given files and attempts to produce Iris Cubes
from their contents.

Note: Currently there is support for CF NetCDF, GRIB 1 & 2, PP and FieldsFiles file formats with a framework for
this to be extended to custom formats.

In order to find out what has been loaded, the result can be printed:

>>> import iris
>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cubes = iris.load(filename)
>>> print(cubes)
0: air_potential_temperature / (K) (time: 3; model_level_number: 7; grid_
→˓latitude: 204; grid_longitude: 187)
1: surface_altitude / (m) (grid_latitude: 204; grid_longitude: 187)

This shows that there were 2 cubes as a result of loading the file, they were: air_potential_temperature and
surface_altitude.

The surface_altitude cube was 2 dimensional with:

• the two dimensions have extents of 204 and 187 respectively and are represented by the grid_latitude and
grid_longitude coordinates.

The air_potential_temperature cubes were 4 dimensional with:

• the same length grid_latitude and grid_longitude dimensions as surface_altitide

• a time dimension of length 3

• a model_level_number dimension of length 7

Note: The result of iris.load() is always a list of cubes. Anything that can be done with a Python list
can be done with the resultant list of cubes. It is worth noting, however, that there is no inherent order to this list

79

Iris, Release 3.0.1

of cubes. Because of this, indexing may be inconsistent. A more consistent way to extract a cube is by using the
iris.Constraint class as described in Constrained Loading.

Hint: Throughout this user guide you will see the function iris.sample_data_path being used to get the
filename for the resources used in the examples. The result of this function is just a string.

Using this function allows us to provide examples which will work across platforms and with data installed in different
locations, however in practice you will want to use your own strings:

filename = '/path/to/file'
cubes = iris.load(filename)

To get the air potential temperature cube from the list of cubes returned by iris.load() in the previous example,
list indexing can be used:

>>> import iris
>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cubes = iris.load(filename)
>>> # get the first cube (list indexing is 0 based)
>>> air_potential_temperature = cubes[0]
>>> print(air_potential_temperature)
air_potential_temperature / (K) (time: 3; model_level_number: 7; grid_latitude:
→˓204; grid_longitude: 187)

Dimension coordinates:
time x - -

→˓ -
model_level_number - x -

→˓ -
grid_latitude - - x

→˓ -
grid_longitude - - -

→˓ x
Auxiliary coordinates:

forecast_period x - -
→˓ -

level_height - x -
→˓ -

sigma - x -
→˓ -

surface_altitude - - x
→˓ x

Derived coordinates:
altitude - x x

→˓ x
Scalar coordinates:

forecast_reference_time: 2009-11-19 04:00:00
Attributes:

STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

Notice that the result of printing a cube is a little more verbose than it was when printing a list of cubes. In addition
to the very short summary which is provided when printing a list of cubes, information is provided on the coordinates
which constitute the cube in question. This was the output discussed at the end of the Iris Data Structures section.

80 Chapter 5. Loading Iris Cubes

Iris, Release 3.0.1

Note: Dimensioned coordinates will have a dimension marker x in the appropriate column for each cube data
dimension that they describe.

5.1 Loading Multiple Files

To load more than one file into a list of cubes, a list of filenames can be provided to iris.load():

filenames = [iris.sample_data_path('uk_hires.pp'),
iris.sample_data_path('air_temp.pp')]

cubes = iris.load(filenames)

It is also possible to load one or more files with wildcard substitution using the expansion rules defined fnmatch.

For example, to match zero or more characters in the filename, star wildcards can be used:

filename = iris.sample_data_path('GloSea4', '*.pp')
cubes = iris.load(filename)

Note: The cubes returned will not necessarily be in the same order as the order of the filenames.

5.2 Lazy Loading

In fact when Iris loads data from most file types, it normally only reads the essential descriptive information or
metadata : the bulk of the actual data content will only be loaded later, as it is needed. This is referred to as ‘lazy’
data. It allows loading to be much quicker, and to occupy less memory.

For more on the benefits, handling and uses of lazy data, see Real and Lazy Data.

5.3 Constrained Loading

Given a large dataset, it is possible to restrict or constrain the load to match specific Iris cube metadata. Constrained
loading provides the ability to generate a cube from a specific subset of data that is of particular interest.

As we have seen, loading the following file creates several Cubes:

filename = iris.sample_data_path('uk_hires.pp')
cubes = iris.load(filename)

Specifying a name as a constraint argument to iris.load() will mean only cubes with matching name will be
returned:

filename = iris.sample_data_path('uk_hires.pp')
cubes = iris.load(filename, 'surface_altitude')

Note that, the provided name will match against either the standard name, long name, NetCDF variable name or
STASH metadata of a cube. Therefore, the previous example using the surface_altitude standard name con-
straint can also be achieved using the STASH value of m01s00i033:

5.1. Loading Multiple Files 81

https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch

Iris, Release 3.0.1

filename = iris.sample_data_path('uk_hires.pp')
cubes = iris.load(filename, 'm01s00i033')

If further specific name constraint control is required i.e., to constrain against a combination of standard name, long
name, NetCDF variable name and/or STASH metadata, consider using the iris.NameConstraint. For example,
to constrain against both a standard name of surface_altitude and a STASH of m01s00i033:

filename = iris.sample_data_path('uk_hires.pp')
constraint = iris.NameConstraint(standard_name='surface_altitude', STASH='m01s00i033')
cubes = iris.load(filename, constraint)

To constrain the load to multiple distinct constraints, a list of constraints can be provided. This is equivalent to running
load once for each constraint but is likely to be more efficient:

filename = iris.sample_data_path('uk_hires.pp')
cubes = iris.load(filename, ['air_potential_temperature', 'surface_altitude'])

The iris.Constraint class can be used to restrict coordinate values on load. For example, to constrain the load
to match a specific model_level_number:

filename = iris.sample_data_path('uk_hires.pp')
level_10 = iris.Constraint(model_level_number=10)
cubes = iris.load(filename, level_10)

Constraints can be combined using & to represent a more restrictive constraint to load:

filename = iris.sample_data_path('uk_hires.pp')
forecast_6 = iris.Constraint(forecast_period=6)
level_10 = iris.Constraint(model_level_number=10)
cubes = iris.load(filename, forecast_6 & level_10)

As well as being able to combine constraints using &, the iris.Constraint class can accept multiple arguments,
and a list of values can be given to constrain a coordinate to one of a collection of values:

filename = iris.sample_data_path('uk_hires.pp')
level_10_or_16_fp_6 = iris.Constraint(model_level_number=[10, 16], forecast_period=6)
cubes = iris.load(filename, level_10_or_16_fp_6)

A common requirement is to limit the value of a coordinate to a specific range, this can be achieved by passing the
constraint a function:

def bottom_16_levels(cell):
return True or False as to whether the cell in question should be kept
return cell <= 16

filename = iris.sample_data_path('uk_hires.pp')
level_lt_16 = iris.Constraint(model_level_number=bottom_16_levels)
cubes = iris.load(filename, level_lt_16)

Note: As with many of the examples later in this documentation, the simple function above can be conveniently
written as a lambda function on a single line:

bottom_16_levels = lambda cell: cell <= 16

Note also the warning on equality constraints with floating point coordinates.

82 Chapter 5. Loading Iris Cubes

Iris, Release 3.0.1

Cube attributes can also be part of the constraint criteria. Supposing a cube attribute of STASH existed, as is the case
when loading PP files, then specific STASH codes can be filtered:

filename = iris.sample_data_path('uk_hires.pp')
level_10_with_stash = iris.AttributeConstraint(STASH='m01s00i004') & iris.
→˓Constraint(model_level_number=10)
cubes = iris.load(filename, level_10_with_stash)

See also:

For advanced usage there are further examples in the iris.Constraint reference documentation.

5.3.1 Constraining a Circular Coordinate Across its Boundary

Occasionally you may need to constrain your cube with a region that crosses the boundary of a circular coordinate
(this is often the meridian or the dateline / antimeridian). An example use-case of this is to extract the entire Pacific
Ocean from a cube whose longitudes are bounded by the dateline.

This functionality cannot be provided reliably using constraints. Instead you should use the functionality provided by
cube.intersection to extract this region.

5.3.2 Constraining on Time

Iris follows NetCDF-CF rules in representing time coordinate values as normalised, purely numeric, values which
are normalised by the calendar specified in the coordinate’s units (e.g. “days since 1970-01-01”). However, when
constraining by time we usually want to test calendar-related aspects such as hours of the day or months of the year,
so Iris provides special features to facilitate this:

Firstly, when Iris evaluates Constraint expressions, it will convert time-coordinate values (points and bounds) from
numbers into datetime-like objects for ease of calendar-based testing.

>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cube_all = iris.load_cube(filename, 'air_potential_temperature')
>>> print('All times :\n' + str(cube_all.coord('time')))
All times :
DimCoord([2009-11-19 10:00:00, 2009-11-19 11:00:00, 2009-11-19 12:00:00], standard_
→˓name='time', calendar='gregorian')
>>> # Define a function which accepts a datetime as its argument (this is simplified
→˓in later examples).
>>> hour_11 = iris.Constraint(time=lambda cell: cell.point.hour == 11)
>>> cube_11 = cube_all.extract(hour_11)
>>> print('Selected times :\n' + str(cube_11.coord('time')))
Selected times :
DimCoord([2009-11-19 11:00:00], standard_name='time', calendar='gregorian')

Secondly, the iris.time module provides flexible time comparison facilities. An iris.time.
PartialDateTime object can be compared to objects such as datetime.datetime instances, and this com-
parison will then test only those ‘aspects’ which the PartialDateTime instance defines:

>>> import datetime
>>> from iris.time import PartialDateTime
>>> dt = datetime.datetime(2011, 3, 7)
>>> print(dt > PartialDateTime(year=2010, month=6))
True
>>> print(dt > PartialDateTime(month=6))

(continues on next page)

5.3. Constrained Loading 83

https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime

Iris, Release 3.0.1

(continued from previous page)

False
>>>

These two facilities can be combined to provide straightforward calendar-based time selections when loading or ex-
tracting data.

The previous constraint example can now be written as:

>>> the_11th_hour = iris.Constraint(time=iris.time.PartialDateTime(hour=11))
>>> print(iris.load_cube(
... iris.sample_data_path('uk_hires.pp'),
... 'air_potential_temperature' & the_11th_hour).coord('time'))
DimCoord([2009-11-19 11:00:00], standard_name='time', calendar='gregorian')

It is common that a cube will need to be constrained between two given dates. In the following example we construct
a time sequence representing the first day of every week for many years:

>>> print(long_ts.coord('time'))
DimCoord([2007-04-09 00:00:00, 2007-04-16 00:00:00, 2007-04-23 00:00:00,

...
2010-02-01 00:00:00, 2010-02-08 00:00:00, 2010-02-15 00:00:00],

standard_name='time', calendar='gregorian')

Given two dates in datetime format, we can select all points between them.

>>> d1 = datetime.datetime.strptime('20070715T0000Z', '%Y%m%dT%H%MZ')
>>> d2 = datetime.datetime.strptime('20070825T0000Z', '%Y%m%dT%H%MZ')
>>> st_swithuns_daterange_07 = iris.Constraint(
... time=lambda cell: d1 <= cell.point < d2)
>>> within_st_swithuns_07 = long_ts.extract(st_swithuns_daterange_07)
>>> print(within_st_swithuns_07.coord('time'))
DimCoord([2007-07-16 00:00:00, 2007-07-23 00:00:00, 2007-07-30 00:00:00,

2007-08-06 00:00:00, 2007-08-13 00:00:00, 2007-08-20 00:00:00],
standard_name='time', calendar='gregorian')

Alternatively, we may rewrite this using iris.time.PartialDateTime objects.

>>> pdt1 = PartialDateTime(year=2007, month=7, day=15)
>>> pdt2 = PartialDateTime(year=2007, month=8, day=25)
>>> st_swithuns_daterange_07 = iris.Constraint(
... time=lambda cell: pdt1 <= cell.point < pdt2)
>>> within_st_swithuns_07 = long_ts.extract(st_swithuns_daterange_07)
>>> print(within_st_swithuns_07.coord('time'))
DimCoord([2007-07-16 00:00:00, 2007-07-23 00:00:00, 2007-07-30 00:00:00,

2007-08-06 00:00:00, 2007-08-13 00:00:00, 2007-08-20 00:00:00],
standard_name='time', calendar='gregorian')

A more complex example might require selecting points over an annually repeating date range. We can select points
within a certain part of the year, in this case between the 15th of July through to the 25th of August. By making use of
PartialDateTime this becomes simple:

>>> st_swithuns_daterange = iris.Constraint(
... time=lambda cell: PartialDateTime(month=7, day=15) <= cell <
→˓PartialDateTime(month=8, day=25))
>>> within_st_swithuns = long_ts.extract(st_swithuns_daterange)
...

(continues on next page)

84 Chapter 5. Loading Iris Cubes

Iris, Release 3.0.1

(continued from previous page)

>>> print(within_st_swithuns.coord('time'))
DimCoord([2007-07-16 00:00:00, 2007-07-23 00:00:00, 2007-07-30 00:00:00,

2007-08-06 00:00:00, 2007-08-13 00:00:00, 2007-08-20 00:00:00,
2008-07-21 00:00:00, 2008-07-28 00:00:00, 2008-08-04 00:00:00,
2008-08-11 00:00:00, 2008-08-18 00:00:00, 2009-07-20 00:00:00,
2009-07-27 00:00:00, 2009-08-03 00:00:00, 2009-08-10 00:00:00,
2009-08-17 00:00:00, 2009-08-24 00:00:00], standard_name='time', calendar=

→˓'gregorian')

Notice how the dates printed are between the range specified in the st_swithuns_daterange and that they span
multiple years.

5.4 Strict Loading

The iris.load_cube() and iris.load_cubes() functions are similar to iris.load() except they can
only return one cube per constraint. The iris.load_cube() function accepts a single constraint and returns a
single cube. The iris.load_cubes() function accepts any number of constraints and returns a list of cubes (as
an iris.cube.CubeList). Providing no constraints to iris.load_cube() or iris.load_cubes() is equivalent
to requesting exactly one cube of any type.

A single cube is loaded in the following example:

>>> filename = iris.sample_data_path('air_temp.pp')
>>> cube = iris.load_cube(filename)
>>> print(cube)
air_temperature / (K) (latitude: 73; longitude: 96)

Dimension coordinates:
latitude x -
longitude - x

...
Cell methods:

mean: time

However, when attempting to load data which would result in anything other than one cube, an exception is raised:

>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cube = iris.load_cube(filename)
Traceback (most recent call last):
...
iris.exceptions.ConstraintMismatchError: Expected exactly one cube, found 2.

Note: All the load functions share many of the same features, hence multiple files could be loaded with wildcard
filenames or by providing a list of filenames.

The strict nature of iris.load_cube() and iris.load_cubes() means that, when combined with con-
strained loading, it is possible to ensure that precisely what was asked for on load is given - otherwise an exception is
raised. This fact can be utilised to make code only run successfully if the data provided has the expected criteria.

For example, suppose that code needed air_potential_temperature in order to run:

import iris
filename = iris.sample_data_path('uk_hires.pp')

(continues on next page)

5.4. Strict Loading 85

Iris, Release 3.0.1

(continued from previous page)

air_pot_temp = iris.load_cube(filename, 'air_potential_temperature')
print(air_pot_temp)

Should the file not produce exactly one cube with a standard name of ‘air_potential_temperature’, an exception will
be raised.

Similarly, supposing a routine needed both ‘surface_altitude’ and ‘air_potential_temperature’ to be able to run:

import iris
filename = iris.sample_data_path('uk_hires.pp')
altitude_cube, pot_temp_cube = iris.load_cubes(filename, ['surface_altitude', 'air_
→˓potential_temperature'])

The result of iris.load_cubes() in this case will be a list of 2 cubes ordered by the constraints provided.
Multiple assignment has been used to put these two cubes into separate variables.

Note: In Python, lists of a pre-known length and order can be exploited using multiple assignment:

>>> number_one, number_two = [1, 2]
>>> print(number_one)
1
>>> print(number_two)
2

86 Chapter 5. Loading Iris Cubes

CHAPTER

SIX

SAVING IRIS CUBES

Iris supports the saving of cubes and cube lists to:

• CF netCDF (version 1.7)

• GRIB edition 2 (if iris-grib is installed)

• Met Office PP

The iris.save() function saves one or more cubes to a file.

If the filename includes a supported suffix then Iris will use the correct saver and the keyword argument saver is not
required.

>>> import iris
>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cubes = iris.load(filename)
>>> iris.save(cubes, '/tmp/uk_hires.nc')

Warning: Saving a cube whose data has been loaded lazily (if cube.has_lazy_data() returns True) to the same file
it expects to load data from will cause both the data in-memory and the data on disk to be lost.

cube = iris.load_cube('somefile.nc')
The next line causes data loss in 'somefile.nc' and the cube.
iris.save(cube, 'somefile.nc')

In general, overwriting a file which is the source for any lazily loaded data can result in corruption. Users should
proceed with caution when attempting to overwrite an existing file.

6.1 Controlling the Save Process

The iris.save() function passes all other keywords through to the saver function defined, or automatically set
from the file extension. This enables saver specific functionality to be called.

>>> # Save a cube to PP
>>> iris.save(cubes[0], "myfile.pp")
>>> # Save a cube list to a PP file, appending to the contents of the file
>>> # if it already exists
>>> iris.save(cubes, "myfile.pp", append=True)
>>> # Save a cube to netCDF, defaults to NETCDF4 file format
>>> iris.save(cubes[0], "myfile.nc")
>>> # Save a cube list to netCDF, using the NETCDF3_CLASSIC storage option
>>> iris.save(cubes, "myfile.nc", netcdf_format="NETCDF3_CLASSIC")

87

https://github.com/SciTools/iris-grib

Iris, Release 3.0.1

See

• iris.fileformats.netcdf.save()

• iris.fileformats.pp.save()

for more details on supported arguments for the individual savers.

6.2 Customising the Save Process

When saving to GRIB or PP, the save process may be intercepted between the translation step and the file writing. This
enables customisation of the output messages, based on Cube metadata if required, over and above the translations
supplied by Iris.

For example, a GRIB2 message with a particular known long_name may need to be saved to a specific parameter code
and type of statistical process. This can be achieved by:

def tweaked_messages(cube):
for cube, grib_message in iris_grib.save_pairs_from_cube(cube):

post process the GRIB2 message, prior to saving
if cube.name() == 'carefully_customised_precipitation_amount':

gribapi.grib_set_long(grib_message, "typeOfStatisticalProcess", 1)
gribapi.grib_set_long(grib_message, "parameterCategory", 1)
gribapi.grib_set_long(grib_message, "parameterNumber", 1)

yield grib_message
iris_grib.save_messages(tweaked_messages(cubes[0]), '/tmp/agrib2.grib2')

Similarly a PP field may need to be written out with a specific value for LBEXP. This can be achieved by:

def tweaked_fields(cube):
for cube, field in iris.fileformats.pp.save_pairs_from_cube(cube):

post process the PP field, prior to saving
if cube.name() == 'air_pressure':

field.lbexp = 'meaxp'
elif cube.name() == 'air_density':

field.lbexp = 'meaxr'
yield field

iris.fileformats.pp.save_fields(tweaked_fields(cubes[0]), '/tmp/app.pp')

6.2.1 NetCDF

NetCDF is a flexible container for metadata and cube metadata is closely related to the CF for netCDF semantics. This
means that cube metadata is well represented in netCDF files, closely resembling the in memory metadata represen-
tation. Thus there is no provision for similar save customisation functionality for netCDF saving, all customisations
should be applied to the cube prior to saving to netCDF.

88 Chapter 6. Saving Iris Cubes

Iris, Release 3.0.1

6.3 Bespoke Saver

A bespoke saver may be written to support an alternative file format. This can be provided to the iris.save()
function, enabling Iris to write to a different file format. Such a custom saver will need be written to meet the needs of
the file format and to handle the metadata translation from cube metadata effectively.

Implementing a bespoke saver is out of scope for the user guide.

6.3. Bespoke Saver 89

Iris, Release 3.0.1

90 Chapter 6. Saving Iris Cubes

CHAPTER

SEVEN

NAVIGATING A CUBE

After loading any cube, you will want to investigate precisely what it contains. This section is all about accessing and
manipulating the metadata contained within a cube.

7.1 Cube String Representations

We have already seen a basic string representation of a cube when printing:

>>> import iris
>>> filename = iris.sample_data_path('rotated_pole.nc')
>>> cube = iris.load_cube(filename)
>>> print(cube)
air_pressure_at_sea_level / (Pa) (grid_latitude: 22; grid_longitude: 36)

Dimension coordinates:
grid_latitude x -
grid_longitude - x

Scalar coordinates:
forecast_period: 0.0 hours
forecast_reference_time: 2006-06-15 00:00:00
time: 2006-06-15 00:00:00

Attributes:
Conventions: CF-1.5
STASH: m01s16i222
source: Data from Met Office Unified Model 6.01

This representation is equivalent to passing the cube to the str() function. This function can be used on any Python
variable to get a string representation of that variable. Similarly there exist other standard functions for interrogating
your variable: repr(), type() for example:

print(str(cube))
print(repr(cube))
print(type(cube))

Other, more verbose, functions also exist which give information on what you can do with any given variable. In most
cases it is reasonable to ignore anything starting with a “_” (underscore) or a “__” (double underscore):

dir(cube)
help(cube)

91

https://docs.python.org/2.7/library/functions.html#repr

Iris, Release 3.0.1

7.2 Working With Cubes

Every cube has a standard name, long name and units which are accessed with Cube.standard_name, Cube.
long_name and Cube.units respectively:

print(cube.standard_name)
print(cube.long_name)
print(cube.units)

Interrogating these with the standard type() function will tell you that standard_name and long_name are
either a string or None, and units is an instance of iris.unit.Unit. A more in depth discussion on the cube
units and their functional effects can be found at the end of Cube Maths.

You can access a string representing the “name” of a cube with the Cube.name() method:

print(cube.name())

The result of which is always a string.

Each cube also has a numpy array which represents the phenomenon of the cube which can be accessed with the
Cube.data attribute. As you can see the type is a numpy n-dimensional array:

print(type(cube.data))

Note: When loading from most file formats in Iris, the data itself is not loaded until the first time that the data is
requested. Hence you may have noticed that running the previous command for the first time takes a little longer than
it does for subsequent calls.

For this reason, when you have a large cube it is strongly recommended that you do not access the cube’s data unless
you need to. For convenience shape and ndim attributes exists on a cube, which can tell you the shape of the cube’s
data without loading it:

print(cube.shape)
print(cube.ndim)

For more on the benefits, handling and uses of lazy data, see Real and Lazy Data

You can change the units of a cube using the convert_units() method. For example:

cube.convert_units('celsius')

As well as changing the value of the units attribute this will also convert the values in data. To replace the units
without modifying the data values one can change the units attribute directly.

Some cubes represent a processed phenomenon which are represented with cell methods, these can be accessed on a
cube with the Cube.cell_methods attribute:

print(cube.cell_methods)

92 Chapter 7. Navigating a Cube

https://numpy.org/doc/stable/reference/index.html#module-numpy
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

7.3 Accessing Coordinates on the Cube

A cube’s coordinates can be retrieved via Cube.coords. A simple for loop over the coords can print a coordinate’s
name():

for coord in cube.coords():
print(coord.name())

Alternatively, we can use list comprehension to store the names in a list:

coord_names = [coord.name() for coord in cube.coords()]

The result is a basic Python list which could be sorted alphabetically and joined together:

>>> print(', '.join(sorted(coord_names)))
forecast_period, forecast_reference_time, grid_latitude, grid_longitude, time

To get an individual coordinate given its name, the Cube.coord method can be used:

coord = cube.coord('grid_latitude')
print(type(coord))

Every coordinate has a Coord.standard_name, Coord.long_name, and Coord.units attribute:

print(coord.standard_name)
print(coord.long_name)
print(coord.units)

Additionally every coordinate can provide its points and bounds numpy array. If the coordinate has no bounds
None will be returned:

print(type(coord.points))
print(type(coord.bounds))

7.4 Adding Metadata to a Cube

We can add and remove coordinates via Cube.add_dim_coord, Cube.add_aux_coord, and Cube.
remove_coord.

>>> import iris.coords
>>> new_coord = iris.coords.AuxCoord(1, long_name='my_custom_coordinate', units='no_
→˓unit')
>>> cube.add_aux_coord(new_coord)
>>> print(cube)
air_pressure_at_sea_level / (Pa) (grid_latitude: 22; grid_longitude: 36)

Dimension coordinates:
grid_latitude x -
grid_longitude - x

Scalar coordinates:
forecast_period: 0.0 hours
forecast_reference_time: 2006-06-15 00:00:00
my_custom_coordinate: 1
time: 2006-06-15 00:00:00

Attributes:

(continues on next page)

7.3. Accessing Coordinates on the Cube 93

Iris, Release 3.0.1

(continued from previous page)

Conventions: CF-1.5
STASH: m01s16i222
source: Data from Met Office Unified Model 6.01

The coordinate my_custom_coordinate now exists on the cube and is listed under the non-dimensioned single
valued scalar coordinates.

7.5 Adding and Removing Metadata to the Cube at Load Time

Sometimes when loading a cube problems occur when the amount of metadata is more or less than expected. This is
often caused by one of the following:

• The file does not contain enough metadata, and therefore the cube cannot know everything about the file.

• Some of the metadata of the file is contained in the filename, but is not part of the actual file.

• There is not enough metadata loaded from the original file as Iris has not handled the format fully. (in which
case, please let us know about it)

To solve this, all of iris.load(), iris.load_cube(), and iris.load_cubes() support a callback key-
word.

The callback is a user defined function which must have the calling sequence function(cube, field,
filename) which can make any modifications to the cube in-place, or alternatively return a completely new cube
instance.

Suppose we wish to load a lagged ensemble dataset from the Met Office’s GloSea4 model. The data for this example
represents 13 ensemble members of 6 one month timesteps; the logistics of the model mean that the run is spread over
several days.

If we try to load the data directly for surface_temperature:

>>> filename = iris.sample_data_path('GloSea4', '*.pp')
>>> print(iris.load(filename, 'surface_temperature'))
0: surface_temperature / (K) (time: 6; forecast_reference_time: 2;
→˓latitude: 145; longitude: 192)
1: surface_temperature / (K) (time: 6; forecast_reference_time: 2;
→˓latitude: 145; longitude: 192)
2: surface_temperature / (K) (realization: 9; time: 6; latitude: 145;
→˓longitude: 192)

We get multiple cubes some with more dimensions than expected, some without a realization (i.e. ensemble
member) dimension. In this case, two of the PP files have been encoded without the appropriate realization
number attribute, which means that the appropriate coordinate cannot be added to the resultant cube. Fortunately, the
missing attribute has been encoded in the filename which, given the filename, we could extract:

filename = iris.sample_data_path('GloSea4', 'ensemble_001.pp')
realization = int(filename[-6:-3])
print(realization)

We can solve this problem by adding the appropriate metadata, on load, by using a callback function, which runs on a
field by field basis before they are automatically merged together:

import numpy as np
import iris
import iris.coords as icoords

(continues on next page)

94 Chapter 7. Navigating a Cube

Iris, Release 3.0.1

(continued from previous page)

def lagged_ensemble_callback(cube, field, filename):
Add our own realization coordinate if it doesn't already exist.
if not cube.coords('realization'):

realization = np.int32(filename[-6:-3])
ensemble_coord = icoords.AuxCoord(realization, standard_name='realization',

→˓units="1")
cube.add_aux_coord(ensemble_coord)

filename = iris.sample_data_path('GloSea4', '*.pp')

print(iris.load(filename, 'surface_temperature', callback=lagged_ensemble_callback))

The result is a single cube which represents the data in a form that was expected:

0: surface_temperature / (K) (realization: 13; time: 6; latitude: 145;
→˓longitude: 192)

7.5. Adding and Removing Metadata to the Cube at Load Time 95

Iris, Release 3.0.1

96 Chapter 7. Navigating a Cube

CHAPTER

EIGHT

SUBSETTING A CUBE

The Loading Iris Cubes section of the user guide showed how to load data into multidimensional Iris cubes. However
it is often necessary to reduce the dimensionality of a cube down to something more appropriate and/or manageable.

Iris provides several ways of reducing both the amount of data and/or the number of dimensions in your cube depending
on the circumstance. In all cases the subset of a valid cube is itself a valid cube.

8.1 Cube Extraction

A subset of a cube can be “extracted” from a multi-dimensional cube in order to reduce its dimensionality:

>>> import iris
>>> filename = iris.sample_data_path('space_weather.nc')
>>> cube = iris.load_cube(filename, 'electron density')
>>> equator_slice = cube.extract(iris.Constraint(grid_latitude=0))
>>> print(equator_slice)
electron density / (1E11 e/m^3) (height: 29; grid_longitude: 31)

Dimension coordinates:
height x -
grid_longitude - x

Auxiliary coordinates:
latitude - x
longitude - x

Scalar coordinates:
grid_latitude: 0.0 degrees

Attributes:
Conventions: CF-1.5

In this example we start with a 3 dimensional cube, with dimensions of height, grid_latitude and
grid_longitude, and extract every point where the latitude is 0, resulting in a 2d cube with axes of height
and grid_longitude.

Warning: Caution is required when using equality constraints with floating point coordinates such as
grid_latitude. Printing the points of a coordinate does not necessarily show the full precision of the un-
derlying number and it is very easy return no matches to a constraint when one was expected. This can be avoided
by using a function as the argument to the constraint:

def near_zero(cell):
"""Returns true if the cell is between -0.1 and 0.1."""
return -0.1 < cell < 0.1

equator_constraint = iris.Constraint(grid_latitude=near_zero)

97

Iris, Release 3.0.1

Often you will see this construct in shorthand using a lambda function definition:

equator_constraint = iris.Constraint(grid_latitude=lambda cell: -0.1 < cell < 0.1)

The extract method could be applied again to the equator_slice cube to get a further subset.

For example to get a height of 9000 metres at the equator the following line extends the previous example:

equator_height_9km_slice = equator_slice.extract(iris.Constraint(height=9000))
print(equator_height_9km_slice)

The two steps required to get height of 9000 m at the equator can be simplified into a single constraint:

equator_height_9km_slice = cube.extract(iris.Constraint(grid_latitude=0, height=9000))
print(equator_height_9km_slice)

As we saw in Loading Iris Cubes the result of iris.load() is a CubeList. The extract method also exists on
a CubeList and behaves in exactly the same way as loading with constraints:

>>> import iris
>>> air_temp_and_fp_6 = iris.Constraint('air_potential_temperature', forecast_
→˓period=6)
>>> level_10 = iris.Constraint(model_level_number=10)
>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cubes = iris.load(filename).extract(air_temp_and_fp_6 & level_10)
>>> print(cubes)
0: air_potential_temperature / (K) (grid_latitude: 204; grid_longitude: 187)
>>> print(cubes[0])
air_potential_temperature / (K) (grid_latitude: 204; grid_longitude: 187)

Dimension coordinates:
grid_latitude x -
grid_longitude - x

Auxiliary coordinates:
surface_altitude x x

Derived coordinates:
altitude x x

Scalar coordinates:
forecast_period: 6.0 hours
forecast_reference_time: 2009-11-19 04:00:00
level_height: 395.0 m, bound=(360.0, 433.3332) m
model_level_number: 10
sigma: 0.9549927, bound=(0.9589389, 0.95068014)
time: 2009-11-19 10:00:00

Attributes:
STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

98 Chapter 8. Subsetting a Cube

Iris, Release 3.0.1

8.2 Cube Iteration

It is not possible to directly iterate over an Iris cube. That is, you cannot use code such as for x in cube:.
However, you can iterate over cube slices, as this section details.

A useful way of dealing with a Cube in its entirety is by iterating over its layers or slices. For example, to deal with a
3 dimensional cube (z,y,x) you could iterate over all 2 dimensional slices in y and x which make up the full 3d cube.:

import iris
filename = iris.sample_data_path('hybrid_height.nc')
cube = iris.load_cube(filename)
print(cube)
for yx_slice in cube.slices(['grid_latitude', 'grid_longitude']):

print(repr(yx_slice))

As the original cube had the shape (15, 100, 100) there were 15 latitude longitude slices and hence the line
print(repr(yx_slice)) was run 15 times.

Note: The order of latitude and longitude in the list is important; had they been swapped the resultant cube slices
would have been transposed.

For further information see Cube.slices.

This method can handle n-dimensional slices by providing more or fewer coordinate names in the list to slices:

import iris
filename = iris.sample_data_path('hybrid_height.nc')
cube = iris.load_cube(filename)
print(cube)
for i, x_slice in enumerate(cube.slices(['grid_longitude'])):

print(i, repr(x_slice))

The Python function enumerate() is used in this example to provide an incrementing variable i which is printed
with the summary of each cube slice. Note that there were 1500 1d longitude cubes as a result of slicing the 3
dimensional cube (15, 100, 100) by longitude (i starts at 0 and 1500 = 15 * 100).

Hint: It is often useful to get a single 2d slice from a multidimensional cube in order to develop a 2d plot function,
for example. This can be achieved by using the next() function on the result of slices:

first_slice = next(cube.slices(['grid_latitude', 'grid_longitude']))

Once the your code can handle a 2d slice, it is then an easy step to loop over all 2d slices within the bigger cube using
the slices method.

8.2. Cube Iteration 99

https://docs.python.org/2.7/library/functions.html#enumerate

Iris, Release 3.0.1

8.3 Cube Indexing

In the same way that you would expect a numeric multidimensional array to be indexed to take a subset of your
original array, you can index a Cube for the same purpose.

Here are some examples of array indexing in numpy:

import numpy as np
create an array of 12 consecutive integers starting from 0
a = np.arange(12)
print(a)

print(a[0]) # first element of the array

print(a[-1]) # last element of the array

print(a[0:4]) # first four elements of the array (the same as a[:4])

print(a[-4:]) # last four elements of the array

print(a[::-1]) # gives all of the array, but backwards

Make a 2d array by reshaping a
b = a.reshape(3, 4)
print(b)

print(b[0, 0]) # first element of the first and second dimensions

print(b[0]) # first element of the first dimension (+ every other dimension)

get the second element of the first dimension and all of the second dimension
in reverse, by steps of two.
print(b[1, ::-2])

Similarly, Iris cubes have indexing capability:

import iris
filename = iris.sample_data_path('hybrid_height.nc')
cube = iris.load_cube(filename)

print(cube)

get the first element of the first dimension (+ every other dimension)
print(cube[0])

get the last element of the first dimension (+ every other dimension)
print(cube[-1])

get the first 4 elements of the first dimension (+ every other dimension)
print(cube[0:4])

Get the first element of the first and third dimension (+ every other dimension)
print(cube[0, :, 0])

Get the second element of the first dimension and all of the second dimension
in reverse, by steps of two.
print(cube[1, ::-2])

100 Chapter 8. Subsetting a Cube

https://numpy.org/doc/stable/reference/index.html#module-numpy

CHAPTER

NINE

REAL AND LAZY DATA

We have seen in the Iris Data Structures section of the user guide that Iris cubes contain data and metadata about a
phenomenon. The data element of a cube is always an array, but the array may be either “real” or “lazy”.

In this section of the user guide we will look specifically at the concepts of real and lazy data as they apply to the cube
and other data structures in Iris.

9.1 What is Real and Lazy Data?

In Iris, we use the term real data to describe data arrays that are loaded into memory. Real data is typically provided
as a NumPy array, which has a shape and data type that are used to describe the array’s data points. Each data point
takes up a small amount of memory, which means large NumPy arrays can take up a large amount of memory.

Conversely, we use the term lazy data to describe data that is not loaded into memory. (This is sometimes also referred
to as deferred data.) In Iris, lazy data is provided as a dask array. A dask array also has a shape and data type but the
dask array’s data points remain on disk and only loaded into memory in small chunks when absolutely necessary. This
has key performance benefits for handling large amounts of data, where both calculation time and storage requirements
can be significantly reduced.

In Iris, when actual data values are needed from a lazy data array, it is ‘realised’ : this means that all the actual values
are read in from the file, and a ‘real’ (i.e. numpy) array replaces the lazy array within the Iris object.

Following realisation, the Iris object just contains the actual (‘real’) data, so the time cost of reading all the data is not
incurred again. From here on, access to the data is fast, but it now occupies its full memory space.

In particular, any direct reference to a cube.data will realise the cube data content : any lazy content is lost as the data
is read from file, and the cube content is replaced with a real array. This is also referred to simply as “touching” the
data.

See the section When Does My Data Become Real? for more examples of this.

You can check whether a cube has real data or lazy data by using the method has_lazy_data(). For example:

>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> cube.has_lazy_data()
True
Realise the lazy data.
>>> cube.data
>>> cube.has_lazy_data()
False

101

https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html
https://docs.dask.org/en/latest/array.html
https://docs.dask.org/en/latest/array-chunks.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html

Iris, Release 3.0.1

9.2 Benefits

The primary advantage of using lazy data is that it enables out-of-core processing; that is, the loading and manipulating
of datasets without loading the full data into memory.

There are two key benefits from this :

Firstly, the result of a calculation on a large dataset often occupies much less storage space than the source data –
such as for instance a maximum data value calculated over a large number of datafiles. In these cases the result can be
computed in sections, without ever requiring the entire source dataset to be loaded, thus drastically reducing memory
footprint. This strategy of task division can also enable reduced execution time through the effective use of parallel
processing capabilities.

Secondly, it is often simply convenient to form a calculation on a large dataset, of which only a certain portion is
required at any one time – for example, plotting individual timesteps from a large sequence. In such cases, a required
portion can be extracted and realised without calculating the entire result.

9.3 When Does My Data Become Real?

Certain operations, such as cube indexing and statistics, can be performed in a lazy fashion, producing a ‘lazy’ result
from a lazy input, so that no realisation immediately occurs. However other operations, such as plotting or printing
data values, will always trigger the ‘realisation’ of data.

When you load a dataset using Iris the data array will almost always initially be a lazy array. This section details some
operations that will realise lazy data as well as some operations that will maintain lazy data. We use the term realise
to mean converting lazy data into real data.

Most operations on data arrays can be run equivalently on both real and lazy data. If the data array is real then the
operation will be run on the data array immediately. The results of the operation will be available as soon as processing
is completed. If the data array is lazy then the operation will be deferred and the data array will remain lazy until you
request the result (such as when you read from cube.data):

>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> cube.has_lazy_data()
True
>>> cube += 5
>>> cube.has_lazy_data()
True

The process by which the operation is deferred until the result is requested is referred to as lazy evaluation.

Certain operations, including regridding and plotting, can only be run on real data. Calling such operations on lazy
data will automatically realise your lazy data.

You can also realise (and so load into memory) your cube’s lazy data if you ‘touch’ the data. To ‘touch’ the data means
directly accessing the data by calling cube.data, as in the previous example.

102 Chapter 9. Real and Lazy Data

https://en.wikipedia.org/wiki/Out-of-core_algorithm

Iris, Release 3.0.1

9.3.1 Core Data

Cubes have the concept of “core data”. This returns the cube’s data in its current state:

• If a cube has lazy data, calling the cube’s core_data() method will return the cube’s lazy dask array. Calling
the cube’s core_data() method will never realise the cube’s data.

• If a cube has real data, calling the cube’s core_data() method will return the cube’s real NumPy array.

For example:

>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> cube.has_lazy_data()
True

>>> the_data = cube.core_data()
>>> type(the_data)
<class 'dask.array.core.Array'>
>>> cube.has_lazy_data()
True

Realise the lazy data.
>>> cube.data
>>> the_data = cube.core_data()
>>> type(the_data)
<type 'numpy.ndarray'>
>>> cube.has_lazy_data()
False

9.4 Coordinates

In the same way that Iris cubes contain a data array, Iris coordinates contain a points array and an optional bounds
array. Coordinate points and bounds arrays can also be real or lazy:

• A DimCoord will only ever have real points and bounds arrays because of monotonicity checks that realise
lazy arrays.

• An AuxCoord can have real or lazy points and bounds.

• An AuxCoordFactory (or derived coordinate) can have real or lazy points and bounds. If all of the
AuxCoord instances used to construct the derived coordinate have real points and bounds then the derived
coordinate will have real points and bounds, otherwise the derived coordinate will have lazy points and bounds.

Iris cubes and coordinates have very similar interfaces, which extends to accessing coordinates’ lazy points and
bounds:

>>> cube = iris.load_cube(iris.sample_data_path('hybrid_height.nc'), 'air_potential_
→˓temperature')

>>> dim_coord = cube.coord('model_level_number')
>>> print(dim_coord.has_lazy_points())
False
>>> print(dim_coord.has_bounds())
False
>>> print(dim_coord.has_lazy_bounds())
False

(continues on next page)

9.4. Coordinates 103

Iris, Release 3.0.1

(continued from previous page)

>>> aux_coord = cube.coord('sigma')
>>> print(aux_coord.has_lazy_points())
True
>>> print(aux_coord.has_bounds())
True
>>> print(aux_coord.has_lazy_bounds())
True

Realise the lazy points. This will **not** realise the lazy bounds.
>>> points = aux_coord.points
>>> print(aux_coord.has_lazy_points())
False
>>> print(aux_coord.has_lazy_bounds())
True

>>> derived_coord = cube.coord('altitude')
>>> print(derived_coord.has_lazy_points())
True
>>> print(derived_coord.has_bounds())
True
>>> print(derived_coord.has_lazy_bounds())
True

Note: Printing a lazy AuxCoord will realise its points and bounds arrays!

9.5 Dask Processing Options

Iris uses dask to provide lazy data arrays for both Iris cubes and coordinates, and for computing deferred operations
on lazy arrays.

Dask provides processing options to control how deferred operations on lazy arrays are computed. This is provided via
the dask.set_options interface. See the dask documentation for more information on setting dask processing
options.

104 Chapter 9. Real and Lazy Data

http://dask.pydata.org/en/latest/scheduler-overview.html

CHAPTER

TEN

PLOTTING A CUBE

Iris utilises the power of Python’s Matplotlib package in order to generate high quality, production ready 1D and 2D
plots. The functionality of the Matplotlib pyplot module has been extended within Iris to facilitate easy visualisation
of a cube’s data.

10.1 Matplotlib’s Pyplot Basics

A simple line plot can be created using the matplotlib.pyplot.plot() function:

import matplotlib.pyplot as plt
plt.plot([1, 2, 2.5])
plt.show()

This code will automatically create a figure with appropriate axes for the plot and show it on screen. The call to
plt.plot([1, 2, 2.5]) will create a line plot with appropriate axes for the data (x=0, y=1; x=1, y=2; x=2, y=2.5). The call
to plt.show() tells Matplotlib that you have finished with this plot and that you would like to visualise it in a window.
This is an example of using matplotlib in non-interactive mode.

There are two modes of rendering within Matplotlib; interactive and non-interactive.

10.1.1 Interactive Plot Rendering

The previous example was non-interactive as the figure is only rendered after the call to plt.show(). Rendering
plots interactively can be achieved by changing the interactive mode:

import matplotlib.pyplot as plt
plt.interactive(True)
plt.plot([1, 2, 2.5])

In this case the plot is rendered automatically with no need to explicitly call matplotlib.pyplot.show() after
plt.plot. Subsequent changes to your figure will be automatically rendered in the window.

The current rendering mode can be determined as follows:

import matplotlib.pyplot as plt
print(plt.isinteractive())

Note: For clarity, each example includes all of the imports required to run on its own; when combining examples
such as the two above, it would not be necessary to repeat the import statement more than once:

105

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/api/pyplot_api.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.show.html#matplotlib.pyplot.show

Iris, Release 3.0.1

import matplotlib.pyplot as plt
plt.interactive(True)
plt.plot([1, 2, 2.5])
print(plt.isinteractive())

Interactive mode does not clear out the figure buffer, so figures have to be explicitly closed when they are finished
with:

plt.close()

– or just close the figure window.

Interactive mode sometimes requires an extra draw command to update all changes, which can be done with:

plt.draw()

For the remainder of this tutorial we will work in non-interactive mode, so ensure that interactive mode is turned off
with:

plt.interactive(False)

10.1.2 Saving a Plot

The matplotlib.pyplot.savefig() function is similar to plt.show() in that they are both non-interactive
visualisation modes. As you might expect, plt.savefig saves your figure as an image:

import matplotlib.pyplot as plt
plt.plot([1, 2, 2.5])
plt.savefig('plot123.png')

The filename extension passed to the matplotlib.pyplot.savefig() function can be used to control the out-
put file format of the plot (keywords can also be used to control this and other aspects, see matplotlib.pyplot.
savefig()).

Some of the formats which are supported by plt.savefig:

Format Type Description
EPS Vector Encapsulated PostScript
PDF Vector Portable Document Format
PNG Raster Portable Network Graphics, a format with a lossless compression method
PS Vector PostScript, ideal for printer output
SVG Vector Scalable Vector Graphics, XML based

106 Chapter 10. Plotting a Cube

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html#matplotlib.pyplot.savefig

Iris, Release 3.0.1

10.2 Iris Cube Plotting

The Iris modules iris.quickplot and iris.plot extend the Matplotlib pyplot interface by implementing thin
wrapper functions. These wrapper functions simply bridge the gap between an Iris cube and the data expected by
standard Matplotlib pyplot functions. This means that all Matplotlib pyplot functionality, including keyword options,
are still available through the Iris plotting wrapper functions.

As a rule of thumb:

• if you wish to do a visualisation with a cube, use iris.plot or iris.quickplot.

• if you wish to show, save or manipulate any visualisation, including ones created with Iris, use matplotlib.
pyplot.

• if you wish to create a non cube visualisation, also use matplotlib.pyplot.

The iris.quickplot module is exactly the same as the iris.plot module, except that quickplot will add
a title, x and y labels and a colorbar where appropriate.

Note: In all subsequent examples the matplotlib.pyplot, iris.plot and iris.quickplot modules are
imported as plt, iplt and qplt respectively in order to make the code more readable. This is equivalent to:

import matplotlib.pyplot as plt
import iris.plot as iplt
import iris.quickplot as qplt

10.2.1 Plotting 1-Dimensional Cubes

The simplest 1D plot is achieved with the iris.plot.plot() function. The syntax is very similar to that which
you would provide to Matplotlib’s equivalent matplotlib.pyplot.plot() and indeed all of the keyword argu-
ments are equivalent:

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt

fname = iris.sample_data_path("air_temp.pp")
temperature = iris.load_cube(fname)

Take a 1d slice using array style indexing.
temperature_1d = temperature[5, :]

iplt.plot(temperature_1d)

plt.show()

For more information on how this example reduced the 2D cube to 1 dimension see the previous section entitled
Subsetting a Cube.

Note: Axis labels and a plot title can be added using the plt.title(), plt.xlabel() and plt.ylabel()
functions.

10.2. Iris Cube Plotting 107

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.title.html#matplotlib.pyplot.title
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.xlabel.html#matplotlib.pyplot.xlabel
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.ylabel.html#matplotlib.pyplot.ylabel

Iris, Release 3.0.1

108 Chapter 10. Plotting a Cube

Iris, Release 3.0.1

As well as providing simple Matplotlib wrappers, Iris also has a iris.quickplot module, which adds extra
cube based metadata to a plot. For example, the previous plot can be improved quickly by replacing iris.plot with
iris.quickplot:

import matplotlib.pyplot as plt

import iris
import iris.quickplot as qplt

fname = iris.sample_data_path("air_temp.pp")
temperature = iris.load_cube(fname)

Take a 1d slice using array style indexing.
temperature_1d = temperature[5, :]

qplt.plot(temperature_1d)

plt.show()

10.2. Iris Cube Plotting 109

Iris, Release 3.0.1

Multi-Line Plot

A multi-lined (or over-plotted) plot, with a legend, can be achieved easily by calling iris.plot.plot() or iris.
quickplot.plot() consecutively and providing the label keyword to identify it. Once all of the lines have been
added the matplotlib.pyplot.legend() function can be called to indicate that a legend is desired:

"""
Multi-Line Temperature Profile Plot
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

"""

import matplotlib.pyplot as plt

import iris
import iris.plot as iplt
import iris.quickplot as qplt

def main():
fname = iris.sample_data_path("air_temp.pp")

Load exactly one cube from the given file.
temperature = iris.load_cube(fname)

We only want a small number of latitudes, so filter some out
using "extract".
temperature = temperature.extract(

iris.Constraint(latitude=lambda cell: 68 <= cell < 78)
)

for cube in temperature.slices("longitude"):

Create a string label to identify this cube (i.e. latitude: value).
cube_label = "latitude: %s" % cube.coord("latitude").points[0]

Plot the cube, and associate it with a label.
qplt.plot(cube, label=cube_label)

Add the legend with 2 columns.
plt.legend(ncol=2)

Put a grid on the plot.
plt.grid(True)

Tell matplotlib not to extend the plot axes range to nicely
rounded numbers.
plt.axis("tight")

Finally, show it.
iplt.show()

if __name__ == "__main__":
main()

This example of consecutive qplt.plot calls coupled with the Cube.slices() method on a cube shows the
temperature at some latitude cross-sections.

110 Chapter 10. Plotting a Cube

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.legend.html#matplotlib.pyplot.legend

Iris, Release 3.0.1

10.2. Iris Cube Plotting 111

Iris, Release 3.0.1

Note: The previous example uses the if __name__ == "__main__" style to run the desired code if and only
if the script is run from the command line.

This is a good habit to get into when writing scripts in Python as it means that any useful functions or variables defined
within the script can be imported into other scripts without running all of the code and thus creating an unwanted plot.
This is discussed in more detail at http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm.

In order to run this example, you will need to copy the code into a file and run it using python my_file.py.

10.2.2 Plotting 2-Dimensional Cubes

Creating Maps

Whenever a 2D plot is created using an iris.coord_systems.CoordSystem, a cartopy GeoAxes instance is
created, which can be accessed with the matplotlib.pyplot.gca() function.

Given the current map, you can draw gridlines and coastlines amongst other things.

See also:

cartopy's gridlines(), cartopy's coastlines().

Cube Contour

A simple contour plot of a cube can be created with either the iris.plot.contour() or iris.quickplot.
contour() functions:

import matplotlib.pyplot as plt

import iris
import iris.quickplot as qplt

fname = iris.sample_data_path("air_temp.pp")
temperature_cube = iris.load_cube(fname)

Add a contour, and put the result in a variable called contour.
contour = qplt.contour(temperature_cube)

Add coastlines to the map created by contour.
plt.gca().coastlines()

Add contour labels based on the contour we have just created.
plt.clabel(contour, inline=False)

plt.show()

112 Chapter 10. Plotting a Cube

http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca

Iris, Release 3.0.1

10.2. Iris Cube Plotting 113

Iris, Release 3.0.1

Cube Filled Contour

Similarly a filled contour plot of a cube can be created with the iris.plot.contourf() or iris.quickplot.
contourf() functions:

import matplotlib.pyplot as plt

import iris
import iris.quickplot as qplt

fname = iris.sample_data_path("air_temp.pp")
temperature_cube = iris.load_cube(fname)

Draw the contour with 25 levels.
qplt.contourf(temperature_cube, 25)

Add coastlines to the map created by contourf.
plt.gca().coastlines()

plt.show()

114 Chapter 10. Plotting a Cube

Iris, Release 3.0.1

Cube Block Plot

In some situations the underlying coordinates are better represented with a continuous bounded coordinate, in which
case a “block” plot may be more appropriate. Continuous block plots can be achieved with either iris.plot.
pcolormesh() or iris.quickplot.pcolormesh().

Note: If the cube’s coordinates do not have bounds, iris.plot.pcolormesh() and iris.quickplot.
pcolormesh() will attempt to guess suitable values based on their points (see also iris.coords.Coord.
guess_bounds()).

import matplotlib.pyplot as plt
import iris
import iris.quickplot as qplt

Load the data for a single value of model level number.
fname = iris.sample_data_path("hybrid_height.nc")
temperature_cube = iris.load_cube(fname, iris.Constraint(model_level_number=1))

Draw the block plot.
qplt.pcolormesh(temperature_cube)

plt.show()

10.2. Iris Cube Plotting 115

Iris, Release 3.0.1

10.3 Brewer Colour Palettes

Iris includes colour specifications and designs developed by Cynthia Brewer These colour schemes are freely available
under the following licence:

Apache-Style Software License for ColorBrewer software and ColorBrewer Color Schemes

Copyright (c) 2002 Cynthia Brewer, Mark Harrower, and The Pennsylvania State
→˓University.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
→˓file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

To include a reference in a journal article or report please refer to section 5 in the citation guidance provided by Cynthia
Brewer.

For adding citations to Iris plots, see Adding a Citation (below).

10.3.1 Available Brewer Schemes

The following subset of Brewer palettes found at colorbrewer2.org are available within Iris.

10.3.2 Plotting With Brewer

To plot a cube using a Brewer colour palette, simply select one of the Iris registered Brewer colour palettes and plot
the cube as normal. The Brewer palettes become available once iris.plot or iris.quickplot are imported.

import matplotlib.cm as mpl_cm
import matplotlib.pyplot as plt

import iris
import iris.quickplot as qplt

fname = iris.sample_data_path("air_temp.pp")
temperature_cube = iris.load_cube(fname)

Load a Cynthia Brewer palette.
brewer_cmap = mpl_cm.get_cmap("brewer_OrRd_09")

Draw the contours, with n-levels set for the map colours (9).
NOTE: needed as the map is non-interpolated, but matplotlib does not provide
any special behaviour for these.
qplt.contourf(temperature_cube, brewer_cmap.N, cmap=brewer_cmap)

Add coastlines to the map created by contourf.
plt.gca().coastlines()

(continues on next page)

116 Chapter 10. Plotting a Cube

https://colorbrewer2.org
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html
https://colorbrewer2.org

Iris, Release 3.0.1

10.3. Brewer Colour Palettes 117

Iris, Release 3.0.1

(continued from previous page)

plt.show()

10.3.3 Adding a Citation

Citations can be easily added to a plot using the iris.plot.citation() function. The recommended text for
the Cynthia Brewer citation is provided by iris.plot.BREWER_CITE.

import matplotlib.pyplot as plt
import iris
import iris.quickplot as qplt
import iris.plot as iplt

fname = iris.sample_data_path("air_temp.pp")
temperature_cube = iris.load_cube(fname)

Get the Purples "Brewer" palette.
brewer_cmap = plt.get_cmap("brewer_Purples_09")

Draw the contours, with n-levels set for the map colours (9).
NOTE: needed as the map is non-interpolated, but matplotlib does not provide

(continues on next page)

118 Chapter 10. Plotting a Cube

Iris, Release 3.0.1

(continued from previous page)

any special behaviour for these.
qplt.contourf(temperature_cube, brewer_cmap.N, cmap=brewer_cmap)

Add a citation to the plot.
iplt.citation(iris.plot.BREWER_CITE)

Add coastlines to the map created by contourf.
plt.gca().coastlines()

plt.show()

10.3. Brewer Colour Palettes 119

Iris, Release 3.0.1

120 Chapter 10. Plotting a Cube

CHAPTER

ELEVEN

CUBE INTERPOLATION AND REGRIDDING

Iris provides powerful cube-aware interpolation and regridding functionality, exposed through Iris cube methods. This
functionality is provided by building upon existing interpolation schemes implemented by SciPy.

In Iris we refer to the available types of interpolation and regridding as schemes. The following are the interpolation
schemes that are currently available in Iris:

• linear interpolation (iris.analysis.Linear), and

• nearest-neighbour interpolation (iris.analysis.Nearest).

The following are the regridding schemes that are currently available in Iris:

• linear regridding (iris.analysis.Linear),

• nearest-neighbour regridding (iris.analysis.Nearest), and

• area-weighted regridding (iris.analysis.AreaWeighted, first-order conservative).

The linear, nearest-neighbor, and area-weighted regridding schemes support lazy regridding, i.e. if the source cube
has lazy data, the resulting cube will also have lazy data. See Real and Lazy Data for an introduction to lazy data.

11.1 Interpolation

Interpolating a cube is achieved with the interpolate() method. This method expects two arguments:

1. the sample points to interpolate, and

2. the second argument being the interpolation scheme to use.

The result is a new cube, interpolated at the sample points.

Sample points must be defined as an iterable of (coord, value(s)) pairs. The coord argument can be either
a coordinate name or coordinate instance. The specified coordinate must exist on the cube being interpolated! For
example:

• coordinate names and scalar sample points: [('latitude', 51.48), ('longitude', 0)],

• a coordinate instance and a scalar sample point: [(cube.coord('latitude'), 51.48)], and

• a coordinate name and a NumPy array of sample points: [('longitude', np.linspace(-11, 2,
14))]

are all examples of valid sample points.

The values for coordinates that correspond to date/times can be supplied as datetime.datetime or cftime.datetime
instances, e.g. [('time', datetime.datetime(2009, 11, 19, 10, 30))]).

Let’s take the air temperature cube we’ve seen previously:

121

Iris, Release 3.0.1

>>> air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> print(air_temp)
air_temperature / (K) (latitude: 73; longitude: 96)

Dimension coordinates:
latitude x -
longitude - x

Scalar coordinates:
forecast_period: 6477 hours, bound=(-28083.0, 6477.0) hours
forecast_reference_time: 1998-03-01 03:00:00
pressure: 1000.0 hPa
time: 1998-12-01 00:00:00, bound=(1994-12-01 00:00:00, 1998-12-01 00:00:00)

Attributes:
STASH: m01s16i203
source: Data from Met Office Unified Model

Cell methods:
mean within years: time
mean over years: time

We can interpolate specific values from the coordinates of the cube:

>>> sample_points = [('latitude', 51.48), ('longitude', 0)]
>>> print(air_temp.interpolate(sample_points, iris.analysis.Linear()))
air_temperature / (K) (scalar cube)

Scalar coordinates:
forecast_period: 6477 hours, bound=(-28083.0, 6477.0) hours
forecast_reference_time: 1998-03-01 03:00:00
latitude: 51.48 degrees
longitude: 0 degrees
pressure: 1000.0 hPa
time: 1998-12-01 00:00:00, bound=(1994-12-01 00:00:00, 1998-12-01 00:00:00)

Attributes:
STASH: m01s16i203
source: Data from Met Office Unified Model

Cell methods:
mean within years: time
mean over years: time

As we can see, the resulting cube is scalar and has longitude and latitude coordinates with the values defined in our
sample points.

It isn’t necessary to specify sample points for every dimension, only those that you wish to interpolate over:

>>> result = air_temp.interpolate([('longitude', 0)], iris.analysis.Linear())
>>> print('Original: ' + air_temp.summary(shorten=True))
Original: air_temperature / (K) (latitude: 73; longitude: 96)
>>> print('Interpolated: ' + result.summary(shorten=True))
Interpolated: air_temperature / (K) (latitude: 73)

The sample points for a coordinate can be an array of values. When multiple coordinates are provided with arrays
instead of scalar sample points, the coordinates on the resulting cube will be orthogonal:

>>> sample_points = [('longitude', np.linspace(-11, 2, 14)),
... ('latitude', np.linspace(48, 60, 13))]
>>> result = air_temp.interpolate(sample_points, iris.analysis.Linear())
>>> print(result.summary(shorten=True))
air_temperature / (K) (latitude: 13; longitude: 14)

122 Chapter 11. Cube Interpolation and Regridding

Iris, Release 3.0.1

11.1.1 Interpolating Non-Horizontal Coordinates

Interpolation in Iris is not limited to horizontal-spatial coordinates - any coordinate satisfying the prerequisites of the
chosen scheme may be interpolated over.

For instance, the iris.analysis.Linear scheme requires 1D numeric, monotonic, coordinates. Supposing we
have a single column cube such as the one defined below:

>>> cube = iris.load_cube(iris.sample_data_path('hybrid_height.nc'), 'air_potential_
→˓temperature')
>>> column = cube[:, 0, 0]
>>> print(column.summary(shorten=True))
air_potential_temperature / (K) (model_level_number: 15)

This cube has a “hybrid-height” vertical coordinate system, meaning that the vertical coordinate is unevenly spaced in
altitude:

>>> print(column.coord('altitude').points)
[418.69836 434.5705 456.7928 485.3665 520.2933 561.5752

609.2145 663.2141 723.57697 790.30664 863.4072 942.8823
1028.737 1120.9764 1219.6051]

We could regularise the vertical coordinate by defining 10 equally spaced altitude sample points between 400 and 1250
and interpolating our vertical coordinate onto these sample points:

>>> sample_points = [('altitude', np.linspace(400, 1250, 10))]
>>> new_column = column.interpolate(sample_points, iris.analysis.Linear())
>>> print(new_column.summary(shorten=True))
air_potential_temperature / (K) (model_level_number: 10)

Let’s look at the original data, the interpolation line and the new data in a plot. This will help us to see what is going
on:

The red diamonds on the extremes of the altitude values show that we have extrapolated data beyond the range of the
original data. In some cases this is desirable but in other cases it is not. For example, this column defines a surface
altitude value of 414m, so extrapolating an “air potential temperature” at 400m makes little physical sense in this case.

We can control the extrapolation mode when defining the interpolation scheme. Controlling the extrapolation mode
allows us to avoid situations like the above where extrapolating values makes little physical sense.

The extrapolation mode is controlled by the extrapolation_mode keyword. For the available interpolation
schemes available in Iris, the extrapolation_mode keyword must be one of:

• extrapolate – the extrapolation points will be calculated by extending the gradient of the closest two points,

• error – a ValueError exception will be raised, notifying an attempt to extrapolate,

• nan – the extrapolation points will be be set to NaN,

• mask – the extrapolation points will always be masked, even if the source data is not a MaskedArray, or

• nanmask – if the source data is a MaskedArray the extrapolation points will be masked. Otherwise they will
be set to NaN.

Using an extrapolation mode is achieved by constructing an interpolation scheme with the extrapolation mode keyword
set as required. The constructed scheme is then passed to the interpolate()method. For example, to mask values
that lie beyond the range of the original data:

>>> scheme = iris.analysis.Linear(extrapolation_mode='mask')
>>> new_column = column.interpolate(sample_points, scheme)

(continues on next page)

11.1. Interpolation 123

Iris, Release 3.0.1

(continued from previous page)

>>> print(new_column.coord('altitude').points)
[-- 494.44451904296875 588.888916015625 683.333251953125 777.77783203125
872.2222290039062 966.666748046875 1061.111083984375 1155.555419921875 --]

11.1.2 Caching an Interpolator

If you need to interpolate a cube on multiple sets of sample points you can ‘cache’ an interpolator to be used for each
of these interpolations. This can shorten the execution time of your code as the most computationally intensive part of
an interpolation is setting up the interpolator.

To cache an interpolator you must set up an interpolator scheme and call the scheme’s interpolator method. The
interpolator method takes as arguments:

1. a cube to be interpolated, and

2. an iterable of coordinate names or coordinate instances of the coordinates that are to be interpolated over.

For example:

>>> air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> interpolator = iris.analysis.Nearest().interpolator(air_temp, ['latitude',
→˓'longitude'])

When this cached interpolator is called you must pass it an iterable of sample points that have the same form as the
iterable of coordinates passed to the constructor. So, to use the cached interpolator defined above:

>>> latitudes = np.linspace(48, 60, 13)
>>> longitudes = np.linspace(-11, 2, 14)

(continues on next page)

124 Chapter 11. Cube Interpolation and Regridding

Iris, Release 3.0.1

(continued from previous page)

>>> for lat, lon in zip(latitudes, longitudes):
... result = interpolator([lat, lon])

In each case result will be a cube interpolated from the air_temp cube we passed to interpolator.

Note that you must specify the required extrapolation mode when setting up the cached interpolator. For example:

>>> interpolator = iris.analysis.Nearest(extrapolation_mode='nan').interpolator(cube,
→˓coords)

11.2 Regridding

Regridding is conceptually a very similar process to interpolation in Iris. The primary difference is that interpolation
is based on sample points, while regridding is based on the horizontal grid of another cube.

Regridding a cube is achieved with the cube.regrid() method. This method expects two arguments:

1. another cube that defines the target grid onto which the cube should be regridded, and

2. the regridding scheme to use.

Note: Regridding is a common operation needed to allow comparisons of data on different grids. The powerful
mapping functionality provided by cartopy, however, means that regridding is often not necessary if performed just
for visualisation purposes.

Let’s load two cubes that have different grids and coordinate systems:

>>> global_air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> rotated_psl = iris.load_cube(iris.sample_data_path('rotated_pole.nc'))

We can visually confirm that they are on different grids by plotting the two cubes:

Let’s regrid the global_air_temp cube onto a rotated pole grid using a linear regridding scheme. To achieve this
we pass the rotated_psl cube to the regridder to supply the target grid to regrid the global_air_temp cube
onto:

11.2. Regridding 125

Iris, Release 3.0.1

>>> rotated_air_temp = global_air_temp.regrid(rotated_psl, iris.analysis.Linear())

We could regrid the pressure values onto the global grid, but this will involve some form of extrapolation. As with
interpolation, we can control the extrapolation mode when defining the regridding scheme.

For the available regridding schemes in Iris, the extrapolation_mode keyword must be one of:

• extrapolate –

– for Linear the extrapolation points will be calculated by extending the gradient of the closest two points.

– for Nearest the extrapolation points will take their value from the nearest source point.

• nan – the extrapolation points will be be set to NaN.

• error – a ValueError exception will be raised, notifying an attempt to extrapolate.

• mask – the extrapolation points will always be masked, even if the source data is not a MaskedArray.

• nanmask – if the source data is a MaskedArray the extrapolation points will be masked. Otherwise they will
be set to NaN.

The rotated_psl cube is defined on a limited area rotated pole grid. If we regridded the rotated_psl cube
onto the global grid as defined by the global_air_temp cube any linearly extrapolated values would quickly
become dominant and highly inaccurate. We can control this behaviour by defining the extrapolation_mode in
the constructor of the regridding scheme to mask values that lie outside of the domain of the rotated pole grid:

>>> scheme = iris.analysis.Linear(extrapolation_mode='mask')
>>> global_psl = rotated_psl.regrid(global_air_temp, scheme)

Notice that although we can still see the approximate shape of the rotated pole grid, the cells have now become
rectangular in a plate carrée (equirectangular) projection. The spatial grid of the resulting cube is really global, with a
large proportion of the data being masked.

126 Chapter 11. Cube Interpolation and Regridding

Iris, Release 3.0.1

11.2.1 Area-Weighted Regridding

It is often the case that a point-based regridding scheme (such as iris.analysis.Linear or iris.analysis.
Nearest) is not appropriate when you need to conserve quantities when regridding. The iris.analysis.
AreaWeighted scheme is less general than Linear or Nearest, but is a conservative regridding scheme, mean-
ing that the area-weighted total is approximately preserved across grids.

With the AreaWeighted regridding scheme, each target grid-box’s data is computed as a weighted mean of all
grid-boxes from the source grid. The weighting for any given target grid-box is the area of the intersection with each
of the source grid-boxes. This scheme performs well when regridding from a high resolution source grid to a lower
resolution target grid, since all source data points will be accounted for in the target grid.

Let’s demonstrate this with the global air temperature cube we saw previously, along with a limited area cube contain-
ing total concentration of volcanic ash:

>>> global_air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> print(global_air_temp.summary(shorten=True))
air_temperature / (K) (latitude: 73; longitude: 96)
>>>
>>> regional_ash = iris.load_cube(iris.sample_data_path('NAME_output.txt'))
>>> regional_ash = regional_ash.collapsed('flight_level', iris.analysis.SUM)
>>> print(regional_ash.summary(shorten=True))
VOLCANIC_ASH_AIR_CONCENTRATION / (g/m3) (latitude: 214; longitude: 584)

One of the key limitations of the AreaWeighted regridding scheme is that the two input grids must be defined in the
same coordinate system as each other. Both input grids must also contain monotonic, bounded, 1D spatial coordinates.

Note: The AreaWeighted regridding scheme requires spatial areas, therefore the longitude and latitude coordinates
must be bounded. If the longitude and latitude bounds are not defined in the cube we can guess the bounds based on
the coordinates’ point values:

>>> global_air_temp.coord('longitude').guess_bounds()
>>> global_air_temp.coord('latitude').guess_bounds()

Using NumPy’s masked array module we can mask any data that falls below a meaningful concentration:

11.2. Regridding 127

Iris, Release 3.0.1

>>> regional_ash.data = np.ma.masked_less(regional_ash.data, 5e-6)

Finally, we can regrid the data using the AreaWeighted regridding scheme:

>>> scheme = iris.analysis.AreaWeighted(mdtol=0.5)
>>> global_ash = regional_ash.regrid(global_air_temp, scheme)
>>> print(global_ash.summary(shorten=True))
VOLCANIC_ASH_AIR_CONCENTRATION / (g/m3) (latitude: 73; longitude: 96)

Note that the AreaWeighted regridding scheme allows us to define a missing data tolerance (mdtol), which
specifies the tolerated fraction of masked data in any given target grid-box. If the fraction of masked data within a
target grid-box exceeds this value, the data in this target grid-box will be masked in the result.

The fraction of masked data is calculated based on the area of masked source grid-boxes that overlaps with each
target grid-box. Defining an mdtol in the AreaWeighted regridding scheme allows fine control of masked data
tolerance. It is worth remembering that defining an mdtol of anything other than 1 will prevent the scheme from
being fully conservative, as some data will be disregarded if it lies close to masked data.

To visualise the above regrid, let’s plot the original data, along with 3 distinct mdtol values to compare the result:

11.2.2 Caching a Regridder

If you need to regrid multiple cubes with a common source grid onto a common target grid you can ‘cache’ a regridder
to be used for each of these regrids. This can shorten the execution time of your code as the most computationally
intensive part of a regrid is setting up the regridder.

To cache a regridder you must set up a regridder scheme and call the scheme’s regridder method. The regridder method
takes as arguments:

1. a cube (that is to be regridded) defining the source grid, and

2. a cube defining the target grid to regrid the source cube to.

128 Chapter 11. Cube Interpolation and Regridding

Iris, Release 3.0.1

For example:

>>> global_air_temp = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> rotated_psl = iris.load_cube(iris.sample_data_path('rotated_pole.nc'))
>>> regridder = iris.analysis.Nearest().regridder(global_air_temp, rotated_psl)

When this cached regridder is called you must pass it a cube on the same grid as the source grid cube (in this case
global_air_temp) that is to be regridded to the target grid. For example:

>>> for cube in list_of_cubes_on_source_grid:
... result = regridder(cube)

In each case result will be the input cube regridded to the grid defined by the target grid cube (in this case
rotated_psl) that we used to define the cached regridder.

11.2.3 Regridding Lazy Data

If you are working with large cubes, especially when you are regridding to a high resolution target grid, you may run
out of memory when trying to regrid a cube. When this happens, make sure the input cube has lazy data

>>> air_temp = iris.load_cube(iris.sample_data_path('A1B_north_america.nc'))
>>> air_temp
<iris 'Cube' of air_temperature / (K) (time: 240; latitude: 37; longitude: 49)>
>>> air_temp.has_lazy_data()
True

and the regridding scheme supports lazy data. All regridding schemes described here support lazy data. If you still run
out of memory even while using lazy data, inspect the chunks :

>>> air_temp.lazy_data().chunks
((240,), (37,), (49,))

The cube above consist of a single chunk, because it is fairly small. For larger cubes, iris will automatically cre-
ate chunks of an optimal size when loading the data. However, because regridding to a high resolution grid may
dramatically increase the size of the data, the automatically chosen chunks might be too large.

As an example of how to solve this, we could manually re-chunk the time dimension, to regrid it in 8 chunks of 30
timesteps at a time:

>>> air_temp.data = air_temp.lazy_data().rechunk([30, None, None])
>>> air_temp.lazy_data().chunks
((30, 30, 30, 30, 30, 30, 30, 30), (37,), (49,))

Assuming that Dask is configured such that it processes only a few chunks of the data array at a time, this will further
reduce memory use.

Note that chunking in the horizontal dimensions is not supported by the regridding schemes. Chunks in these dimen-
sions will automatically be combined before regridding.

11.2. Regridding 129

https://docs.dask.org/en/latest/array-chunks.html

Iris, Release 3.0.1

130 Chapter 11. Cube Interpolation and Regridding

CHAPTER

TWELVE

MERGE AND CONCATENATE

We saw in the Loading Iris Cubes chapter that Iris tries to load as few cubes as possible. This is done by collecting
together multiple fields with a shared standard name (and other key metadata) into a single multidimensional cube.
The processes that perform this behaviour in Iris are known as merge and concatenate.

This chapter describes the merge and concatenate processes; it explains why common issues occur when using
them and gives advice on how prevent these issues from occurring.

Both merge and concatenate take multiple cubes as input and result in fewer cubes as output. The following
diagram illustrates the two processes:

There is one major difference between the merge and concatenate processes.

• The merge process combines multiple input cubes into a single resultant cube with new dimensions created
from the scalar coordinate values of the input cubes.

• The concatenate process combines multiple input cubes into a single resultant cube with the same number
of dimensions as the input cubes, but with the length of one or more dimensions extended by joining together
sequential dimension coordinates.

Let’s imagine 28 individual cubes representing the temperature at a location (y, x); one cube for each day of
February. We can use merge() to combine the 28 (y, x) cubes into a single (t, y, x) cube, where the length
of the t dimension is 28.

Now imagine 12 individual cubes representing daily temperature at a time and location (t, y, x); one cube for
each month in the year. We can use concatenate() to combine the 12 (t, y, x) cubes into a single (t, y,
x) cube, where the length of the t dimension is now 365.

131

Iris, Release 3.0.1

12.1 Merge

We’ve seen that the merge process combines multiple input cubes into a single resultant cube with new dimensions
created from the scalar coordinate values of the input cubes.

In order to construct new coordinates for the new dimensions, the merge process requires input cubes with scalar
coordinates that can be combined together into monotonic sequences. The order of the input cubes does not affect the
merge process.

The merge process can produce a cube that has more than one new dimension, if the scalar coordinate sequences
form an orthogonal basis.

Important: The shape, metadata, attributes, coordinates, coordinates metadata, fill value and other aspects of the
input cubes must be consistent across all of the input cubes.

The merge process will fail if these are not consistent. Such failures are covered in the Common Issues With Merge
and Concatenate section.

The merge process can be accessed using two methods. The two methods are merge() and merge_cube(),
which are described below.

12.1.1 Using CubeList.merge

The CubeList.merge method operates on a list of cubes and returns a new CubeList containing the cubes that
have been merged.

Let’s have a look at the merge() method in operation. In this example we have a list of three lateral (x, y) cubes in a
variable called cubes, each with a scalar z coordinate of differing value. We can merge these cubes by stacking the
scalar z coordinates to make a new z dimension coordinate:

>>> print(cubes)
0: air_temperature / (kelvin) (y: 4; x: 5)
1: air_temperature / (kelvin) (y: 4; x: 5)
2: air_temperature / (kelvin) (y: 4; x: 5)

>>> print(cubes[0])
air_temperature / (kelvin) (y: 4; x: 5)
...

Scalar coordinates:
z: 1 meters

>>> print(cubes[1])
air_temperature / (kelvin) (y: 4; x: 5)
...

Scalar coordinates:
z: 2 meters

>>> print(cubes[2])
air_temperature / (kelvin) (y: 4; x: 5)
...

Scalar coordinates:
z: 3 meters

>>> print(cubes.merge())
0: air_temperature / (kelvin) (z: 3; y: 4; x: 5)

The following diagram illustrates what has taken place in this example:

132 Chapter 12. Merge and Concatenate

Iris, Release 3.0.1

The diagram illustrates that we have three input cubes of identical shape that stack on the z dimension. After merging
our three input cubes we get a new CubeList containing one cube with a new z coordinate.

12.1.2 Using CubeList.merge_cube

The merge_cube() method guarantees that exactly one cube will be returned as a result of merging the input cubes.
If merge_cube() cannot fulfil this guarantee, a descriptive error will be raised providing details to help diagnose
the differences between the input cubes. In contrast, the merge() method makes no check on the number of cubes
returned.

To demonstrate the differences between merge() and merge_cube(), let’s return to our three cubes from the
earlier merge example.

For the purposes of this example a Conventions attribute has been added to the first cube’s attributes dictio-
nary. Remember that the attributes must be consistent across all cubes in order to merge into a single cube:

>>> print(cubes)
0: air_temperature / (kelvin) (y: 4; x: 5)
1: air_temperature / (kelvin) (y: 4; x: 5)
2: air_temperature / (kelvin) (y: 4; x: 5)

>>> print(cubes[0].attributes)
{'Conventions': 'CF-1.5'}
>>> print(cubes[1].attributes)
{}
>>> print(cubes[2].attributes)
{}

>>> print(cubes.merge())
0: air_temperature / (kelvin) (y: 4; x: 5)
1: air_temperature / (kelvin) (z: 2; y: 4; x: 5)

>>> print(cubes.merge_cube())
Traceback (most recent call last):

...
raise iris.exceptions.MergeError(msgs)

iris.exceptions.MergeError: failed to merge into a single cube.
cube.attributes keys differ: 'Conventions'

Note that merge() returns two cubes here. All the cubes that can be merged have been merged. Any cubes that can’t
be merged are included unchanged in the returned CubeList. When merge_cube() is called on cubes it raises a
descriptive error that highlights the difference in the attributes dictionaries. It is this difference that is preventing

12.1. Merge 133

Iris, Release 3.0.1

cubes being merged into a single cube. An example of fixing an issue like this can be found in the Common Issues
With Merge and Concatenate section.

12.1.3 Merge in Iris Load

The CubeList’s merge() method is used internally by the three main Iris load functions introduced in Loading Iris
Cubes. For file formats such as GRIB and PP, which store fields as many individual 2D arrays, Iris loading uses the
merge process to produce a more intuitive higher dimensional cube of each phenomenon where possible.

Sometimes the merge process doesn’t behave as expected. In almost all cases this is due to the input cubes containing
unexpected or inconsistent metadata. For this reason, a fourth Iris file loading function, iris.load_raw(), exists.
The load_raw() function is intended as a diagnostic tool that can be used to load cubes from files without the
merge process taking place. The return value of iris.load_raw() is always a CubeList instance. You can
then call the merge_cube() method on this returned CubeList to help identify merge related load issues.

12.2 Concatenate

We’ve seen that the concatenate process combines multiple input cubes into a single resultant cube with the same
number of dimensions as the input cubes, but with the length of one or more dimensions extended by joining together
sequential dimension coordinates.

In order to extend the dimensions lengths, the concatenate process requires input cubes with dimension coor-
dinates that can be combined together into monotonic sequences. The order of the input cubes does not affect the
concatenate process.

Important: The shape, metadata, attributes, coordinates, coordinates metadata, fill value and other aspects of the
input cubes must be consistent across all of the input cubes.

The concatenate process will fail if these are not consistent. Such failures are covered in the Common Issues With
Merge and Concatenate section.

The concatenate process can be accessed using two methods. The two methods are concatenate() and
concatenate_cube(), which are described below.

12.2.1 Using CubeList.concatenate

The CubeList.concatenate method operates on a list of cubes and returns a new CubeList containing the
cubes that have been concatenated.

Let’s have a look at the concatenate() method in operation. In the example below we have three 3D (t, y,
x) cubes whose t coordinates have sequentially increasing ranges. These cubes can be concatenated by combining
the t coordinates of the input cubes to form a new cube with an extended t coordinate:

>>> print(cubes)
0: air_temperature / (kelvin) (t: 31; y: 3; x: 4)
1: air_temperature / (kelvin) (t: 28; y: 3; x: 4)
2: air_temperature / (kelvin) (t: 31; y: 3; x: 4)

>>> print(cubes.concatenate())
0: air_temperature / (kelvin) (t: 90; y: 3; x: 4)

134 Chapter 12. Merge and Concatenate

Iris, Release 3.0.1

The following diagram illustrates what has taken place in this example:

The diagram illustrates that we have three 3D input cubes that line up on the t dimension. After concatenating our
three input cubes we get a new CubeList containing one cube with an extended t coordinate.

12.2.2 Using CubeList.concatenate_cube

The concatenate_cube() method guarantees that exactly one cube will be returned as a result of concatenating
the input cubes. If concatenate_cube() cannot fulfil this guarantee, a descriptive error will be raised providing
details to help diagnose the differences between the input cubes. In contrast, the concatenate() method makes
no check on the number of cubes returned.

To demonstrate the differences between concatenate() and concatenate_cube(), let’s return to our three
cubes from the earlier concatenate example.

For the purposes of this example we’ll add a History attribute to the first cube’s attributes dictionary. Remember
that the attributes must be consistent across all cubes in order to concatenate into a single cube:

>>> print(cubes)
0: air_temperature / (kelvin) (t: 31; y: 3; x: 4)
1: air_temperature / (kelvin) (t: 28; y: 3; x: 4)
2: air_temperature / (kelvin) (t: 31; y: 3; x: 4)

>>> print(cubes[0].attributes)
{'History': 'Created 2010-06-30'}
>>> print(cubes[1].attributes)
{}

>>> print(cubes.concatenate())
0: air_temperature / (kelvin) (t: 31; y: 3; x: 4)
1: air_temperature / (kelvin) (t: 59; y: 3; x: 4)
>>> print(cubes.concatenate_cube())
Traceback (most recent call last):

...
raise iris.exceptions.ConcatenateError(msgs)

iris.exceptions.ConcatenateError: failed to concatenate into a single cube.
Cube metadata differs for phenomenon: air_temperature

Note that concatenate() returns two cubes here. All the cubes that can be concatenated have been con-
catenated. Any cubes that can’t be concatenated are included unchanged in the returned CubeList. When
concatenate_cube() is called on cubes it raises a descriptive error that highlights the difference in the
attributes dictionaries. It is this difference that is preventing cubes being concatenated into a single cube.
An example of fixing an issue like this can be found in the Common Issues With Merge and Concatenate section.

12.2. Concatenate 135

Iris, Release 3.0.1

12.3 Common Issues With Merge and Concatenate

The Iris algorithms that drive merge() and concatenate() are complex and depend on a number of different
elements of the input cubes being consistent across all input cubes. If this consistency is not maintained then the
merge() or concatenate() process can fail in a seemingly arbitrary manner.

The methods merge_cube() and concatenate_cube() were introduced to Iris to help you locate differences
in input cubes that prevent the input cubes merging or concatenating. Nevertheless, certain difficulties with using
merge() and concatenate() occur frequently. This section describes these common difficulties, why they arise
and what you can do to avoid them.

12.3.1 Merge

Attributes Mismatch

Differences in the attributes the input cubes probably cause the greatest amount of merge-related difficulties. In
recognition of this, Iris has a helper function, equalise_attributes(), to equalise attributes differences in the
input cubes.

Note: The functionality provided by iris.util.describe_diff() and iris.cube.Cube.
is_compatible() are not designed to give user indication of whether two cubes can be merged.

To demonstrate using equalise_attributes(), let’s return to our non-merging list of input cubes from the
merge_cube example from earlier. We’ll call equalise_attributes() on the input cubes before merging the
input cubes using merge_cube():

>>> from iris.util import equalise_attributes
>>> print(cubes)
0: air_temperature / (kelvin) (y: 4; x: 5)
1: air_temperature / (kelvin) (y: 4; x: 5)
2: air_temperature / (kelvin) (y: 4; x: 5)

>>> print(cubes[0].attributes)
{'Conventions': 'CF-1.5'}
>>> print(cubes[1].attributes)
{}
>>> print(cubes[2].attributes)
{}

>>> print(cubes.merge_cube())
Traceback (most recent call last):

...
raise iris.exceptions.MergeError(msgs)

iris.exceptions.MergeError: failed to merge into a single cube.
cube.attributes keys differ: 'Conventions'

>>> equalise_attributes(cubes)

>>> print(cubes[0].attributes)
{}

>>> print(cubes.merge_cube())
air_temperature / (kelvin) (z: 3; y: 4; x: 5)

Dimension coordinates:

(continues on next page)

136 Chapter 12. Merge and Concatenate

Iris, Release 3.0.1

(continued from previous page)

z x - -
y - x -
x - - x

Incomplete Data

Merging input cubes with inconsistent dimension lengths can cause misleading results. This is a common problem
when merging cubes generated by different ensemble members in a model run.

The misleading results cause the merged cube to gain an anonymous leading dimension. All the merged coordinates
appear as auxiliary coordinates on the anonymous leading dimension. This is shown in the example below:

>>> print(cube)
surface_temperature / (K) (-- : 5494; latitude: 325; longitude: 432)

Dimension coordinates:
latitude - x -
longitude - - x

Auxiliary coordinates:
forecast_month x - -
forecast_period x - -
forecast_reference_time x - -
realization x - -
time x - -

Merging Duplicate Cubes

The Iris load process does not merge duplicate cubes (two or more identical cubes in the input cubes) by default. This
behaviour can be changed by setting the unique keyword argument to merge() to False.

Merging duplicate cubes can cause misleading results. Let’s demonstrate these behaviours and misleading results with
the following example. In this example we have three input cubes. The first has a scalar z coordinate with value 1, the
second has a scalar z coordinate with value 2 and the third has a scalar z coordinate with value 1. The first and third
cubes are thus identical. We will demonstrate the effect of merging the input cubes with unique=False (duplicate
cubes allowed) and unique=True (duplicate cubes not allowed, which is the default behaviour):

>>> print(cubes)
0: air_temperature / (kelvin) (y: 4; x: 5)
1: air_temperature / (kelvin) (y: 4; x: 5)
2: air_temperature / (kelvin) (y: 4; x: 5)

>>> print(cubes.merge(unique=False))
0: air_temperature / (kelvin) (z: 2; y: 4; x: 5)
1: air_temperature / (kelvin) (z: 2; y: 4; x: 5)

>>> print(cubes.merge()) # unique=True is the default.
Traceback (most recent call last):

...
iris.exceptions.DuplicateDataError: failed to merge into a single cube.

Duplicate 'air_temperature' cube, with scalar coordinates z=Cell(point=1,
→˓bound=None)

Notice how merging the input cubes with duplicate cubes allowed produces a result with four z coordinate values.
Closer inspection of these two resultant cubes demonstrates that the scalar z coordinate with value 2 is found in both
cubes.

Trying to merge the input cubes with duplicate cubes not allowed raises an error highlighting the presence of the
duplicate cube.

Single Value Coordinates

12.3. Common Issues With Merge and Concatenate 137

Iris, Release 3.0.1

Coordinates containing only a single value can cause confusion when combining input cubes. Remember:

• The merge process combines multiple input cubes into a single resultant cube with new dimensions created
from the scalar coordinate values of the input cubes.

• The concatenate process combines multiple input cubes into a single resultant cube with the same number
of dimensions as the input cubes, but with the length of one or more dimensions extended by joining together
sequential dimension coordinates.

In Iris terminology a scalar coordinate is a coordinate of length 1 which does not describe a data dimension.

Let’s look at two example cubes to demonstrate this.

If your cubes are similar to those below (the single value z coordinate is not on a dimension) then use merge() to
combine your cubes:

>>> print(cubes[0])
air_temperature / (kelvin) (y: 4; x: 5)

Dimension coordinates:
x x -
y - x

Scalar coordinates:
z: 1

>>> print(cubes[1])
air_temperature / (kelvin) (y: 4; x: 5)

Dimension coordinates:
x x -
y - x

Scalar coordinates:
z: 2

If your cubes are similar to those below (the single value z coordinate is associated with a dimension) then use
concatenate() to combine your cubes:

>>> print(cubes)
0: air_temperature / (kelvin) (z: 1; y: 4; x: 5)
1: air_temperature / (kelvin) (z: 1; y: 4; x: 5)

12.3.2 Concatenate

Time Units

Differences in the units of the time coordinates of the input cubes probably cause the greatest amount of concatenate-
related difficulties. In recognition of this, Iris has a helper function, unify_time_units(), to apply a common
time unit to all the input cubes.

To demonstrate using unify_time_units(), let’s adapt our list of input cubes from the concatenate_cube
example from earlier. We’ll give the input cubes unequal time coordinate units and call unify_time_units() on
the input cubes before concatenating the input cubes using concatenate_cube():

>>> from iris.util import unify_time_units
>>> print(cubes)
0: air_temperature / (kelvin) (t: 31; y: 3; x: 4)
1: air_temperature / (kelvin) (t: 28; y: 3; x: 4)
2: air_temperature / (kelvin) (t: 31; y: 3; x: 4)

>>> print(cubes[0].coord('t').units)
days since 1990-02-15

(continues on next page)

138 Chapter 12. Merge and Concatenate

Iris, Release 3.0.1

(continued from previous page)

>>> print(cubes[1].coord('t').units)
days since 1970-01-01

>>> print(cubes.concatenate_cube())
Traceback (most recent call last):
...

ConcatenateError: failed to concatenate into a single cube.
Dimension coordinates metadata differ: t != t

>>> unify_time_units(cubes)

>>> print(cubes[1].coord('t').units)
days since 1990-02-15

>>> print(cubes.concatenate_cube())
air_temperature / (kelvin) (t: 90; y: 3; x: 4)

Dimension coordinates:
t x - -
y - x -
x - - x

Attributes Mismatch

The concatenate process is affected by attributes mismatch on input cubes in the same way that the merge process
is. The Attributes Mismatch section earlier in this chapter gives further information on attributes mismatch.

12.3. Common Issues With Merge and Concatenate 139

Iris, Release 3.0.1

140 Chapter 12. Merge and Concatenate

CHAPTER

THIRTEEN

CUBE STATISTICS

13.1 Collapsing Entire Data Dimensions

In the Subsetting a Cube section we saw how to extract a subset of a cube in order to reduce either its dimensionality
or its resolution. Instead of simply extracting a sub-region of the data, we can produce statistical functions of the data
values across a particular dimension, such as a ‘mean over time’ or ‘minimum over latitude’.

For instance, suppose we have a cube:

>>> import iris
>>> filename = iris.sample_data_path('uk_hires.pp')
>>> cube = iris.load_cube(filename, 'air_potential_temperature')
>>> print(cube)
air_potential_temperature / (K) (time: 3; model_level_number: 7; grid_latitude:
→˓204; grid_longitude: 187)

Dimension coordinates:
time x - -

→˓ -
model_level_number - x -

→˓ -
grid_latitude - - x

→˓ -
grid_longitude - - -

→˓ x
Auxiliary coordinates:

forecast_period x - -
→˓ -

level_height - x -
→˓ -

sigma - x -
→˓ -

surface_altitude - - x
→˓ x

Derived coordinates:
altitude - x x

→˓ x
Scalar coordinates:

forecast_reference_time: 2009-11-19 04:00:00
Attributes:

STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

In this case we have a 4 dimensional cube; to mean the vertical (z) dimension down to a single valued extent we can
pass the coordinate name and the aggregation definition to the Cube.collapsed() method:

141

Iris, Release 3.0.1

>>> import iris.analysis
>>> vertical_mean = cube.collapsed('model_level_number', iris.analysis.MEAN)
>>> print(vertical_mean)
air_potential_temperature / (K) (time: 3; grid_latitude: 204; grid_longitude: 187)

Dimension coordinates:
time x - -
grid_latitude - x -
grid_longitude - - x

Auxiliary coordinates:
forecast_period x - -
surface_altitude - x x

Derived coordinates:
altitude - x x

Scalar coordinates:
forecast_reference_time: 2009-11-19 04:00:00
level_height: 696.6666 m, bound=(0.0, 1393.3333) m
model_level_number: 10, bound=(1, 19)
sigma: 0.92292976, bound=(0.8458596, 1.0)

Attributes:
STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

Cell methods:
mean: model_level_number

Similarly other analysis operators such as MAX, MIN and STD_DEV can be used instead of MEAN, see iris.
analysis for a full list of currently supported operators.

For an example of using this functionality, the Hovmoller Diagram of Monthly Surface Temperature example found
in the gallery takes a zonal mean of an XYT cube by using the collapsed method with latitude and iris.
analysis.MEAN as arguments.

13.1.1 Area Averaging

Some operators support additional keywords to the cube.collapsed method. For example, iris.
analysis.MEAN supports a weights keyword which can be combined with iris.analysis.cartography.
area_weights() to calculate an area average.

Let’s use the same data as was loaded in the previous example. Since grid_latitude and grid_longitude
were both point coordinates we must guess bound positions for them in order to calculate the area of the grid boxes:

import iris.analysis.cartography
cube.coord('grid_latitude').guess_bounds()
cube.coord('grid_longitude').guess_bounds()
grid_areas = iris.analysis.cartography.area_weights(cube)

These areas can now be passed to the collapsed method as weights:

>>> new_cube = cube.collapsed(['grid_longitude', 'grid_latitude'], iris.analysis.MEAN,
→˓ weights=grid_areas)
>>> print(new_cube)
air_potential_temperature / (K) (time: 3; model_level_number: 7)

Dimension coordinates:
time x -
model_level_number - x

Auxiliary coordinates:

(continues on next page)

142 Chapter 13. Cube Statistics

Iris, Release 3.0.1

(continued from previous page)

forecast_period x -
level_height - x
sigma - x

Derived coordinates:
altitude - x

Scalar coordinates:
forecast_reference_time: 2009-11-19 04:00:00
grid_latitude: 1.5145501 degrees, bound=(0.14430022, 2.8848) degrees
grid_longitude: 358.74948 degrees, bound=(357.494, 360.00497) degrees
surface_altitude: 399.625 m, bound=(-14.0, 813.25) m

Attributes:
STASH: m01s00i004
source: Data from Met Office Unified Model
um_version: 7.3

Cell methods:
mean: grid_longitude, grid_latitude

Several examples of area averaging exist in the gallery which may be of interest, including an example on taking a
global area-weighted mean.

13.2 Partially Reducing Data Dimensions

Instead of completely collapsing a dimension, other methods can be applied to reduce or filter the number of data
points of a particular dimension.

13.2.1 Aggregation of Grouped Data

The Cube.aggregated_by operation combines data for all points with the same value of a given coordinate. To
do this, you need a coordinate whose points take on only a limited set of different values – the number of these then
determines the size of the reduced dimension. The iris.coord_categorisation module can be used to make
such ‘categorical’ coordinates out of ordinary ones: The most common use is to aggregate data over regular time
intervals, such as by calendar month or day of the week.

For example, let’s create two new coordinates on the cube to represent the climatological seasons and the season year
respectively:

import iris
import iris.coord_categorisation

filename = iris.sample_data_path('ostia_monthly.nc')
cube = iris.load_cube(filename, 'surface_temperature')

iris.coord_categorisation.add_season(cube, 'time', name='clim_season')
iris.coord_categorisation.add_season_year(cube, 'time', name='season_year')

Note: The ‘season year’ is not the same as year number, because (e.g.) the months Dec11, Jan12 + Feb12 all belong
to ‘DJF-12’. See iris.coord_categorisation.add_season_year().

Printing this cube now shows that two extra coordinates exist on the cube:

13.2. Partially Reducing Data Dimensions 143

Iris, Release 3.0.1

>>> print(cube)
surface_temperature / (K) (time: 54; latitude: 18; longitude: 432)

Dimension coordinates:
time x - -
latitude - x -
longitude - - x

Auxiliary coordinates:
clim_season x - -
forecast_reference_time x - -
season_year x - -

Scalar coordinates:
forecast_period: 0 hours

Attributes:
Conventions: CF-1.5
STASH: m01s00i024

Cell methods:
mean: month, year

These two coordinates can now be used to aggregate by season and climate-year:

>>> annual_seasonal_mean = cube.aggregated_by(
... ['clim_season', 'season_year'],
... iris.analysis.MEAN)
>>> print(repr(annual_seasonal_mean))
<iris 'Cube' of surface_temperature / (K) (time: 19; latitude: 18; longitude: 432)>

The primary change in the cube is that the cube’s data has been reduced in the ‘time’ dimension by aggregation
(taking means, in this case). This has collected together all data points with the same values of season and season-
year. The results are now indexed by the 19 different possible values of season and season-year in a new, reduced
‘time’ dimension.

We can see this by printing the first 10 values of season+year from the original cube: These points are individual
months, so adjacent ones are often in the same season:

>>> for season, year in zip(cube.coord('clim_season')[:10].points,
... cube.coord('season_year')[:10].points):
... print(season + ' ' + str(year))
mam 2006
mam 2006
jja 2006
jja 2006
jja 2006
son 2006
son 2006
son 2006
djf 2007
djf 2007

Compare this with the first 10 values of the new cube’s coordinates: All the points now have distinct season+year
values:

>>> for season, year in zip(
... annual_seasonal_mean.coord('clim_season')[:10].points,
... annual_seasonal_mean.coord('season_year')[:10].points):
... print(season + ' ' + str(year))
mam 2006
jja 2006

(continues on next page)

144 Chapter 13. Cube Statistics

Iris, Release 3.0.1

(continued from previous page)

son 2006
djf 2007
mam 2007
jja 2007
son 2007
djf 2008
mam 2008
jja 2008

Because the original data started in April 2006 we have some incomplete seasons (e.g. there were only two months
worth of data for ‘mam-2006’). In this case we can fix this by removing all of the resultant ‘times’ which do not cover
a three month period (note: judged here as > 3*28 days):

>>> tdelta_3mth = datetime.timedelta(hours=3*28*24.0)
>>> spans_three_months = lambda t: (t.bound[1] - t.bound[0]) > tdelta_3mth
>>> three_months_bound = iris.Constraint(time=spans_three_months)
>>> full_season_means = annual_seasonal_mean.extract(three_months_bound)
>>> full_season_means
<iris 'Cube' of surface_temperature / (K) (time: 17; latitude: 18; longitude: 432)>

The final result now represents the seasonal mean temperature for 17 seasons from jja-2006 to jja-2010:

>>> for season, year in zip(full_season_means.coord('clim_season').points,
... full_season_means.coord('season_year').points):
... print(season + ' ' + str(year))
jja 2006
son 2006
djf 2007
mam 2007
jja 2007
son 2007
djf 2008
mam 2008
jja 2008
son 2008
djf 2009
mam 2009
jja 2009
son 2009
djf 2010
mam 2010
jja 2010

13.2. Partially Reducing Data Dimensions 145

Iris, Release 3.0.1

146 Chapter 13. Cube Statistics

CHAPTER

FOURTEEN

CUBE MATHS

The section Navigating a Cube highlighted that every cube has a data attribute; this attribute can then be manipulated
directly:

cube.data -= 273.15

The problem with manipulating the data directly is that other metadata may become inconsistent; in this case the units
of the cube are no longer what was intended. This example could be rectified by changing the units attribute:

cube.units = 'celsius'

Note: iris.cube.Cube.convert_units() can be used to automatically convert a cube’s data and update its
units attribute. So, the two steps above can be achieved by:

cube.convert_units('celsius')

In order to reduce the amount of metadata which becomes inconsistent, fundamental arithmetic operations such as
addition, subtraction, division and multiplication can be applied directly to any cube.

14.1 Calculating the Difference Between Two Cubes

Let’s load some air temperature which runs from 1860 to 2100:

filename = iris.sample_data_path('E1_north_america.nc')
air_temp = iris.load_cube(filename, 'air_temperature')

We can now get the first and last time slices using indexing (see Subsetting a Cube for a reminder):

t_first = air_temp[0, :, :]
t_last = air_temp[-1, :, :]

And finally we can subtract the two. The result is a cube of the same size as the original two time slices, but with the
data representing their difference:

>>> print(t_last - t_first)
unknown / (K) (latitude: 37; longitude: 49)

Dimension coordinates:
latitude x -
longitude - x

Scalar coordinates:

(continues on next page)

147

Iris, Release 3.0.1

(continued from previous page)

forecast_reference_time: 1859-09-01 06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
Model scenario: E1
source: Data from Met Office Unified Model 6.05

Note: Notice that the coordinates “time” and “forecast_period” have been removed from the resultant cube; this is
because these coordinates differed between the two input cubes.

14.2 Calculating a Cube Anomaly

In section Cube Statistics we discussed how the dimensionality of a cube can be reduced using the Cube.collapsed
method to calculate a statistic over a dimension.

Let’s use that method to calculate a mean of our air temperature time-series, which we’ll then use to calculate a time
mean anomaly and highlight the powerful benefits of cube broadcasting.

First, let’s remind ourselves of the shape of our air temperature time-series cube:

>>> print(air_temp.summary(True))
air_temperature / (K) (time: 240; latitude: 37; longitude: 49)

Now, we’ll calculate the time-series mean using the Cube.collapsed method:

>>> air_temp_mean = air_temp.collapsed('time', iris.analysis.MEAN)
>>> print(air_temp_mean.summary(True))
air_temperature / (K) (latitude: 37; longitude: 49)

As expected the time dimension has been collapsed, reducing the dimensionality of the resultant air_temp_mean cube.
This time-series mean can now be used to calculate the time mean anomaly against the original time-series:

>>> anomaly = air_temp - air_temp_mean
>>> print(anomaly.summary(True))
unknown / (K) (time: 240; latitude: 37; longitude: 49)

Notice that the calculation of the anomaly involves subtracting a 2d cube from a 3d cube to yield a 3d result. This is
only possible because cube broadcasting is performed during cube arithmetic operations.

Cube broadcasting follows similar broadcasting rules as NumPy, but the additional richness of Iris coordinate meta-
data provides an enhanced capability beyond the basic broadcasting behaviour of NumPy.

As the coordinate meta-data of a cube uniquely describes each dimension, it is possible to leverage this knowledge to
identify the similar dimensions involved in a cube arithmetic operation. This essentially means that we are no longer
restricted to performing arithmetic on cubes with identical shapes.

This extended broadcasting behaviour is highlighted in the following examples. The first of these shows that it is
possible to involve the transpose of the air temperature time-series in an arithmetic operation with itself.

Let’s first create the transpose of the air temperature time-series:

>>> air_temp_T = air_temp.copy()
>>> air_temp_T.transpose()

(continues on next page)

148 Chapter 14. Cube Maths

http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

Iris, Release 3.0.1

(continued from previous page)

>>> print(air_temp_T.summary(True))
air_temperature / (K) (longitude: 49; latitude: 37; time: 240)

Now add the transpose to the original time-series:

>>> result = air_temp + air_temp_T
>>> print(result.summary(True))
unknown / (K) (time: 240; latitude: 37; longitude: 49)

Notice that the result is the same dimensionality and shape as air_temp. Let’s check that the arithmetic operation has
calculated a result that we would intuitively expect:

>>> result == 2 * air_temp
True

Let’s extend this example slightly, by taking a slice from the middle latitude dimension of the transpose cube:

>>> air_temp_T_slice = air_temp_T[:, 0, :]
>>> print(air_temp_T_slice.summary(True))
air_temperature / (K) (longitude: 49; time: 240)

Compared to our original time-series, the air_temp_T_slice cube has one less dimension and it’s shape if different.
However, this doesn’t prevent us from performing cube arithmetic with it, thanks to the extended cube broadcasting
behaviour:

>>> result = air_temp - air_temp_T_slice
>>> print(result.summary(True))
unknown / (K) (time: 240; latitude: 37; longitude: 49)

14.3 Combining Multiple Phenomena to Form a New One

Combining cubes of potential-temperature and pressure we can calculate the associated temperature using the equa-
tion:

𝑇 = 𝜃(
𝑝

𝑝0
)(287.05/1005)

Where 𝑝 is pressure, 𝜃 is potential temperature, 𝑝0 is the potential temperature reference pressure and 𝑇 is temperature.

First, let’s load pressure and potential temperature cubes:

filename = iris.sample_data_path('colpex.pp')
phenomenon_names = ['air_potential_temperature', 'air_pressure']
pot_temperature, pressure = iris.load_cubes(filename, phenomenon_names)

In order to calculate 𝑝
𝑝0

we can define a coordinate which represents the standard reference pressure of 1000 hPa:

import iris.coords
p0 = iris.coords.AuxCoord(1000.0,

long_name='reference_pressure',
units='hPa')

We must ensure that the units of pressure and p0 are the same, so convert the newly created coordinate using the
iris.coords.Coord.convert_units() method:

14.3. Combining Multiple Phenomena to Form a New One 149

Iris, Release 3.0.1

p0.convert_units(pressure.units)

Now we can combine all of this information to calculate the air temperature using the equation above:

temperature = pot_temperature * ((pressure / p0) ** (287.05 / 1005))

Finally, the cube we have created needs to be given a suitable name:

temperature.rename('air_temperature')

The result could now be plotted using the guidance provided in the Plotting a Cube section.

A very similar example to this can be found in the examples section, with the title “Deriving Exner Pressure and Air
Temperature”.

14.4 Combining Units

It should be noted that when combining cubes by multiplication, division or power operations, the resulting cube will
have a unit which is an appropriate combination of the constituent units. In the above example, since pressure
and p0 have the same unit, then pressure / p0 has a dimensionless unit of '1'. Since (pressure / p0)
has a unit of '1', this does not change under power operations and so ((pressure / p0) ** (287.05 /
1005)) also has unit 1. Multiplying by a cube with unit '1' will preserve units, so the cube temperature
will be given the same units as are in pot_temperature. It should be noted that some combinations of units,
particularly those involving power operations, will not result in a valid unit and will cause the calculation to fail. For
example, a cube a had units 'm' then a ** 0.5 would result in an error since the square root of a meter has no
meaningful unit (if a had units 'm2' then a ** 0.5 would result in a cube with units 'm').

Iris inherits units from cf_units which in turn inherits from UDUNITS. As well as the units UDUNITS provides, cf
units also provides the units 'no-unit' and 'unknown'. A unit of 'no-unit' means that the associated data
is not suitable for describing with a unit, cf units considers 'no-unit' unsuitable for combining and therefore any
arithmetic done on a cube with 'no-unit' will fail. A unit of 'unknown' means that the unit describing the
associated data cannot be determined. cf units and Iris will allow arithmetic on cubes with a unit of 'unknown',
but the resulting cube will always have a unit of 'unknown'. If a calculation is prevented because it would result in
inappropriate units, it may be forced by setting the units of the original cubes to be 'unknown'.

150 Chapter 14. Cube Maths

https://scitools.org.uk/cf-units/docs/latest/
https://www.unidata.ucar.edu/software/udunits/udunits-current/udunits2.html

CHAPTER

FIFTEEN

CITING IRIS

If Iris played an important part in your research then please add us to your reference list by using one of the recom-
mendations below.

15.1 BibTeX Entry

For example:

@manual{Iris,
author = {{Met Office}},
title = {Iris: A Python package for analysing and visualising meteorological and
→˓oceanographic data sets},
edition = {v1.2},
year = {2010 - 2013},
address = {Exeter, Devon },
url = {http://scitools.org.uk/}
}

15.2 Downloaded Software

Suggested format:

ProductName. Version. ReleaseDate. Publisher. Location. DOIorURL. DownloadDate.

For example:

Iris. v1.2. 28-Feb-2013. Met Office. UK. https://github.com/SciTools/iris/archive/v1.
→˓2.0.tar.gz 01-03-2013

15.3 Checked Out Software

Suggested format:

ProductName. Publisher. URL. CheckoutDate. RepositorySpecificCheckoutInformation.

For example:

151

Iris, Release 3.0.1

Iris. Met Office. git@github.com:SciTools/iris.git 06-03-2013

Reference: [Jackson].

152 Chapter 15. Citing Iris

CHAPTER

SIXTEEN

CODE MAINTENANCE

From a user point of view “code maintenance” means ensuring that your existing working code stays working, in the
face of changes to Iris.

16.1 Stability and Change

In practice, as Iris develops, most users will want to periodically upgrade their installed version to access new features
or at least bug fixes.

This is obvious if you are still developing other code that uses Iris, or using code from other sources. However, even
if you have only legacy code that remains untouched, some code maintenance effort is probably still necessary:

• On the one hand, in principle, working code will go on working, as long as you don’t change anything else.

• However, such “version stasis” can easily become a growing burden, if you are simply waiting until an update
becomes unavoidable, often that will eventually occur when you need to update some other software component,
for some completely unconnected reason.

16.2 Principles of Change Management

When you upgrade software to a new version, you often find that you need to rewrite your legacy code, simply to keep
it working.

In Iris, however, we aim to reduce code maintenance problems to an absolute minimum by following defined change
management rules. These ensure that, within a major release number :

• you can be confident that your code will still work with subsequent minor releases

• you will be aware of future incompatibility problems in advance

• you can defer making code compatibility changes for some time, until it suits you

The above applies to minor version upgrades : e.g. code that works with version “1.4.2” should still work with a
subsequent minor release such as “1.5.0” or “1.7.2”.

A major release however, e.g. “v2.0.0” or “v3.0.0”, can include more significant changes, including so-called “break-
ing” changes: This means that existing code may need to be modified to make it work with the new version.

Since breaking change can only occur at major releases, these are the only times we can alter or remove existing
behaviours (even deprecated ones). This is what a major release is for : it enables the removal and replacement of old
features.

Of course, even at a major release, we do still aim to keep breaking changes to a minimum.

153

Iris, Release 3.0.1

154 Chapter 16. Code Maintenance

CHAPTER

SEVENTEEN

INTRODUCTION

Some specific areas of Iris may require further explanation or a deep dive into additional detail above and beyond that
offered by the User Guide.

This section provides a collection of additional material on focused topics that may be of interest to the more advanced
or curious user.

Hint: If you wish further documentation on any specific topics or areas of Iris that are missing, then please let us
know by raising a GitHub Documentation Issue on SciTools/Iris.

• Metadata

• Lenient Metadata

• Lenient Cube Maths

155

https://github.com/SciTools/iris/issues/new?assignees=&labels=New%3A+Documentation%2C+Type%3A+Documentation&template=documentation.md&title=
https://github.com/SciTools/iris

Iris, Release 3.0.1

156 Chapter 17. Introduction

CHAPTER

EIGHTEEN

METADATA

This section provides a detailed overview of how your metadata is managed within Iris. In particular, it discusses what
metadata is, where it fits into Iris, and more importantly how you can create, access, manipulate, and analyse your
metadata.

All the finer details covered here may not be entirely relevant to your use case, but it’s here if you ever need it. In fact,
you may want to skip straight ahead to Richer Metadata Behaviour, and take it from there.

18.1 Introduction

As discussed in Iris Data Structures, Iris draws heavily from the NetCDF CF Metadata Conventions as a source for its
data model, thus building on the widely recognised and understood terminology defined within those CF Conventions
by the scientific community.

In Iris Data Structures we introduced several fundamental classes in Iris that care about your data, and also your
metadata i.e., data about data. These are the Cube, the AuxCoord, and the DimCoord, all of which should be
familiar to you now. In addition to these, Iris models several other classes of CF Conventions metadata. Namely,

• the AncillaryVariable, see Ancillary Data and Flags,

• the CellMeasure, see Cell Measures,

• the AuxCoordFactory , see Parametric Vertical Coordinate

Collectively, the aforementioned classes will be known here as the Iris CF Conventions classes.

Hint: If there are any CF Conventions metadata missing from Iris that you care about, then please let us know by
raising a GitHub Issue on SciTools/iris

18.2 Common Metadata

Each of the Iris CF Conventions classes use metadata to define them and give them meaning.

The metadata used to define an Iris CF Conventions class is composed of individual metadata members, almost all
of which reference specific CF Conventions terms. The individual metadata members used to define each of the Iris
CF Conventions classes are shown in Table 18.1.

As Table 18.1 highlights, specific metadata is used to define and represent each Iris CF Conventions class. This means
that metadata alone, can be used to easily identify, compare and differentiate between individual class instances.

157

https://cfconventions.org/
https://cfconventions.org/
https://en.wikipedia.org/wiki/Metadata
https://cfconventions.org/
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#cell-measures
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#parametric-vertical-coordinate
https://cfconventions.org/
https://cfconventions.org/
https://github.com/SciTools/iris/issues/new/choose
https://github.com/SciTools/iris
https://cfconventions.org/
https://cfconventions.org/
https://cfconventions.org/
https://cfconventions.org/
https://cfconventions.org/

Iris, Release 3.0.1

For example, the collective metadata used to define an AncillaryVariable are the standard_name,
long_name, var_name, units, and attributes members. Note that, these are the actual data attribute names
of the metadata members on the Iris class.

Table 18.1: - Iris classes that model CF Conventions metadata
Metadata
Members

AncillaryVariableAuxCoordAuxCoordFactoryCellMeasureCube DimCoordMetadata
Members

standard_nameXXX XXX XXX XXX XXX XXX standard_name
long_name XXX XXX XXX XXX XXX XXX long_name
var_name XXX XXX XXX XXX XXX XXX var_name
units XXX XXX XXX XXX XXX XXX units
attributes XXX XXX XXX XXX XXX XXX attributes
coord_system XXX XXX XXX coord_system
climatological XXX XXX XXX climatological
measure XXX measure
cell_methods XXX cell_methods
circular XXX circular

Note: The var_name and circular metadata members are Iris specific terms, rather than recognised CF Con-
ventions terms.

18.3 Common Metadata API

As of Iris 3.0.0, a unified treatment of metadata has been applied across each Iris class (Table 18.1) to allow users
to easily manage and manipulate their metadata in a consistent way.

This is achieved through the metadata property, which allows you to manipulate the associated underlying metadata
members as a collective. For example, given the following Cube,

>>> print(cube)
air_temperature / (K) (time: 240; latitude: 37; longitude: 49)

Dimension coordinates:
time x - -
latitude - x -
longitude - - x

Auxiliary coordinates:
forecast_period x - -

Scalar coordinates:
forecast_reference_time: 1859-09-01 06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
Model scenario: A1B
STASH: m01s03i236
source: Data from Met Office Unified Model 6.05

Cell methods:
mean: time (6 hour)

We can easily get all of the associated metadata of the Cube using the metadata property:

158 Chapter 18. Metadata

https://docs.python.org/3/tutorial/classes.html#instance-objects
https://cfconventions.org/
https://cfconventions.org/

Iris, Release 3.0.1

>>> cube.metadata
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, cell_methods=(CellMethod(method='mean', coord_
→˓names=('time',), intervals=('6 hour',), comments=()),))

We can also inspect the metadata of the longitude DimCoord attached to the Cube in the same way:

>>> cube.coord("longitude").metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Or use the metadata property again, but this time on the forecast_period AuxCoord attached to the Cube:

>>> cube.coord("forecast_period").metadata
CoordMetadata(standard_name='forecast_period', long_name=None, var_name='forecast_
→˓period', units=Unit('hours'), attributes={}, coord_system=None,
→˓climatological=False)

Note that, the metadata property is available on each of the Iris CF Conventions class containers referenced in Table
18.1, and thus provides a common and consistent approach to managing your metadata, which we’ll now explore a
little more fully.

18.3.1 Metadata Classes

The metadata property will return an appropriate namedtuple metadata class for each Iris CF Conventions class
container. The metadata class returned by each container class is shown in Table 18.2 below,

Table 18.2: - Iris namedtuple metadata classes
Container Class Metadata Class
AncillaryVariable AncillaryVariableMetadata
AuxCoord CoordMetadata
AuxCoordFactory CoordMetadata
CellMeasure CellMeasureMetadata
Cube CubeMetadata
DimCoord DimCoordMetadata

Akin to the behaviour of a namedtuple, the metadata classes in Table 18.2 create tuple-like instances i.e., they provide
a snapshot of the associated metadata member values, which are not settable, but they may be mutable depending
on the data-type of the member. For example, given the following metadata of a DimCoord,

>>> longitude = cube.coord("longitude")
>>> metadata = longitude.metadata
>>> metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

The metadata member value is the same as the container class member value,

18.3. Common Metadata API 159

https://cfconventions.org/
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://cfconventions.org/
https://docs.python.org/3/library/collections.html#collections.namedtuple

Iris, Release 3.0.1

>>> metadata.attributes is longitude.attributes
True
>>> metadata.circular is longitude.circular
True

Like a namedtuple, the metadata member is not settable,

>>> metadata.attributes = {"grinning face": ""}
Traceback (most recent call last):
AttributeError: can't set attribute

However, for a dict member, it is mutable,

>>> metadata.attributes
{}
>>> longitude.attributes["grinning face"] = ""
>>> metadata.attributes
{'grinning face': ''}
>>> metadata.attributes["grinning face"] = ""
>>> longitude.attributes
{'grinning face': ''}

But metadata members with simple values are not mutable,

>>> metadata.circular
False
>>> longitude.circular = True
>>> metadata.circular
False

And of course, they’re also not settable,

>>> metadata.circular = True
Traceback (most recent call last):
AttributeError: can't set attribute

Note that, the metadata property re-creates a new instance per invocation, with a snapshot of the container class
metadata values at that point in time,

>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=True)

Skip ahead to metadata assignment for a fuller discussion on options how to set and get metadata on the instance of
an Iris CF Conventions container class (Table 18.2).

160 Chapter 18. Metadata

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://cfconventions.org/

Iris, Release 3.0.1

18.3.2 Metadata Class Behaviour

As mentioned previously, the metadata classes in Table 18.2 inherit the behaviour of a namedtuple, and so act and feel
like a namedtuple, just as you might expect. For example, given the following metadata,

>>> metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)

We can use the namedtuple._make method to create a new DimCoordMetadata instance from an existing sequence
or iterable. The number and order of the values used in the iterable must match that of the associated namedtu-
ple._fields, which is discussed later,

>>> values = (1, 2, 3, 4, 5, 6, 7, 8)
>>> metadata._make(values)
DimCoordMetadata(standard_name=1, long_name=2, var_name=3, units=4, attributes=5,
→˓coord_system=6, climatological=7, circular=8)

Note that, namedtuple._make is a class method, and so it is possible to create a new instance directly from the metadata
class itself,

>>> from iris.common import DimCoordMetadata
>>> DimCoordMetadata._make(values)
DimCoordMetadata(standard_name=1, long_name=2, var_name=3, units=4, attributes=5,
→˓coord_system=6, climatological=7, circular=8)

It is also possible to easily convert metadata to an OrderedDict using the namedtuple._asdict method. This can be
particularly handy when a standard Python built-in container is required to represent your metadata,

>>> metadata._asdict()
OrderedDict([('standard_name', 'longitude'), ('long_name', None), ('var_name',
→˓'longitude'), ('units', Unit('degrees')), ('attributes', {'grinning face': ''}), (
→˓'coord_system', GeogCS(6371229.0)), ('climatological', False), ('circular', False)])

Using the namedtuple._replace method allows you to create a new metadata class instance, but replacing specified
members with new associated values,

>>> metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)
>>> metadata._replace(standard_name=None, units=None)
DimCoordMetadata(standard_name=None, long_name=None, var_name='longitude', units=None,
→˓ attributes={'grinning face': ''}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Another very useful method from the namedtuple toolkit is namedtuple._fields. This method returns a tuple of strings
listing the metadata members, in a fixed order. This allows you to easily iterate over the metadata class members,
for what ever purpose you may require, e.g.,

>>> metadata._fields
('standard_name', 'long_name', 'var_name', 'units', 'attributes', 'coord_system',
→˓'climatological', 'circular')

>>> tuple([getattr(metadata, member) for member in metadata._fields])
('longitude', None, 'longitude', Unit('degrees'), {'grinning face': ''},
→˓GeogCS(6371229.0), False, False) (continues on next page)

18.3. Common Metadata API 161

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._make
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._fields
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._fields
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._make
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._asdict
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._replace
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.somenamedtuple._fields

Iris, Release 3.0.1

(continued from previous page)

>>> tuple([getattr(metadata, member) for member in metadata._fields if member.
→˓endswith("name")])
('longitude', None, 'longitude')

Note that, namedtuple._fields is also a class method, so you don’t need an instance to determine the members of a
metadata class, e.g.,

>>> from iris.common import CubeMetadata
>>> CubeMetadata._fields
('standard_name', 'long_name', 'var_name', 'units', 'attributes', 'cell_methods')

Aside from the benefit of metadata classes inheriting behaviour and state from namedtuple, further additional rich
behaviour is also available, which we explore next.

18.3.3 Richer Metadata Behaviour

The metadata classes from Table 18.2 support additional behaviour above and beyond that of the standard Python
namedtuple, which allows you to easily compare, combine, convert and understand the difference between your
metadata instances.

Metadata Equality

The metadata classes support both equality (__eq__) and inequality (__ne__), but no other rich comparison oper-
ators are implemented. This is simply because there is no obvious ordering to any collective of metadata members, as
defined in Table 18.1.

For example, given the following DimCoord,

>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

We can compare metadata using the == operator, as you may naturally expect,

>>> longitude.metadata == longitude.metadata
True

Or alternatively, using the equal method instead,

>>> longitude.metadata.equal(longitude.metadata)
True

Note that, the == operator (__eq__) and the equal method are both functionally equivalent. However, the equal
method also provides a means to enable lenient equality, as discussed in Lenient Equality.

162 Chapter 18. Metadata

https://docs.python.org/3/library/collections.html#collections.somenamedtuple._fields
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://www.python.org/dev/peps/pep-0207/

Iris, Release 3.0.1

Strict Equality

By default, metadata class equality will perform a strict comparison between each associated metadata member. If
any metadata member has a different value, then the result of the operation will be False. For example,

>>> other = longitude.metadata._replace(standard_name=None)
>>> other
DimCoordMetadata(standard_name=None, long_name=None, var_name='longitude', units=Unit(
→˓'degrees'), attributes={}, coord_system=GeogCS(6371229.0), climatological=False,
→˓circular=False)
>>> longitude.metadata == other
False

>>> longitude.attributes = {"grinning face": ""}
>>> other = longitude.metadata._replace(attributes={"grinning face": ""})
>>> other
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)
>>> longitude.metadata == other
False

One further point worth highlighting is it is possible for NumPy scalars and arrays to appear in the attributes dict
of some Iris metadata class instances. Normally, this would cause issues. For example,

>>> simply = {"one": np.int(1), "two": np.array([1.0, 2.0])}
>>> simply
{'one': 1, 'two': array([1., 2.])}
>>> fruity = {"one": np.int(1), "two": np.array([1.0, 2.0])}
>>> fruity
{'one': 1, 'two': array([1., 2.])}
>>> simply == fruity
Traceback (most recent call last):
ValueError: The truth value of an array with more than one element is ambiguous. Use
→˓a.any() or a.all()

However, metadata class equality is rich enough to handle this eventuality,

>>> metadata1 = cube.metadata._replace(attributes=simply)
>>> metadata2 = cube.metadata._replace(attributes=fruity)
>>> metadata1
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'one': 1, 'two': array([1., 2.])}, cell_
→˓methods=(CellMethod(method='mean', coord_names=('time',), intervals=('6 hour',),
→˓comments=()),))
>>> metadata2
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'one': 1, 'two': array([1., 2.])}, cell_
→˓methods=(CellMethod(method='mean', coord_names=('time',), intervals=('6 hour',),
→˓comments=()),))

>>> metadata1 == metadata2
True

>>> metadata1
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'one': 1, 'two': array([1., 2.])}, cell_
→˓methods=(CellMethod(method='mean', coord_names=('time',), intervals=('6 hour',),
→˓comments=()),))

(continues on next page)

18.3. Common Metadata API 163

https://github.com/numpy/numpy
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Iris, Release 3.0.1

(continued from previous page)

>>> metadata2 = cube.metadata._replace(attributes={"one": np.int(1), "two": np.
→˓array([1000.0, 2000.0])})
>>> metadata2
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'one': 1, 'two': array([1000., 2000.])},
→˓cell_methods=(CellMethod(method='mean', coord_names=('time',), intervals=('6 hour',
→˓), comments=()),))
>>> metadata1 == metadata2
False

Comparing Like With Like

So far in our journey through metadata class equality, we have only considered cases where the operands are instances
of the same type. It is possible to compare instances of different metadata classes, but the result will always be
False,

>>> cube.metadata == longitude.metadata
False

The reason different metadata classes cannot be compared is simply because each metadata class contains different
members, as shown in Table 18.1. However, there is an exception to the rule. . .

Exception to the Rule

In general, different metadata classes cannot be compared, however support is provided for compar-
ing CoordMetadata and DimCoordMetadata metadata classes. For example, consider the following
DimCoordMetadata,

>>> latitude = cube.coord("latitude")
>>> latitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Next we create a new CoordMetadata instance from the DimCoordMetadata instance,

>>> kwargs = latitude.metadata._asdict()
>>> del kwargs["circular"]
>>> metadata = CoordMetadata(**kwargs)
>>> metadata
CoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False)

Hint: Alternatively, use the from_metadata class method instead, see Metadata Conversion.

Comparing the instances confirms that equality is indeed supported between DimCoordMetadata and
CoordMetadata classes,

>>> latitude.metadata == metadata
True

164 Chapter 18. Metadata

Iris, Release 3.0.1

The reason for this behaviour is primarily historical. The circular member has never been used by the __eq__
operator when comparing an AuxCoord and a DimCoord. Therefore for consistency, this behaviour is also extended
to __eq__ for the associated container metadata classes.

However, note that the circular member is used by the __eq__ operator when comparing one DimCoord to
another. This also applies when comparing DimCoordMetadata.

This exception to the rule for equality also applies to the difference and combine methods of metadata classes.

Metadata Difference

Being able to compare metadata is valuable, especially when we have the convenience of being able to do this easily
with metadata classes. However, when the result of comparing two metadata instances is False, it begs the question,
“what’s the difference?”

Well, this is where we pull the difference method out of the metadata toolbox. First, let’s create some metadata
to compare,

>>> longitude = cube.coord("longitude")
>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)

Now, we replace some members of the DimCoordMetadata with different values,

>>> from cf_units import Unit
>>> metadata = longitude.metadata._replace(long_name="lon", var_name="lon",
→˓units=Unit("radians"))
>>> metadata
DimCoordMetadata(standard_name='longitude', long_name='lon', var_name='lon',
→˓units=Unit('radians'), attributes={'grinning face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)

First, confirm that the metadata is different,

>>> longitude.metadata != metadata
True

As expected, the metadata is different. Now, let’s answer the question, “what’s the difference?”,

>>> longitude.metadata.difference(metadata)
DimCoordMetadata(standard_name=None, long_name=(None, 'lon'), var_name=('longitude',
→˓'lon'), units=(Unit('degrees'), Unit('radians')), attributes=None, coord_
→˓system=None, climatological=None, circular=None)

The differencemethod returns a DimCoordMetadata instance, when there is at least one metadatamember
with a different value, where,

• None means that there was no difference for the member,

• a tuple contains the two different associated values for the member

Given our example, only the long_name, var_name and units members have different values, as expected. Note
that, the difference method is not commutative. The order of the tuple member values is the same order of the
metadata class instances being compared, e.g., changing the difference instance order is reflected in the result,

18.3. Common Metadata API 165

https://docs.python.org/3/library/stdtypes.html#tuples

Iris, Release 3.0.1

>>> metadata.difference(longitude.metadata)
DimCoordMetadata(standard_name=None, long_name=('lon', None), var_name=('lon',
→˓'longitude'), units=(Unit('radians'), Unit('degrees')), attributes=None, coord_
→˓system=None, climatological=None, circular=None)

Also, when the metadata being compared is identical, then None is simply returned,

>>> metadata.difference(metadata) is None
True

It’s worth highlighting that for the attributes dict member, only those keys with different values or missing
keys will be returned by the difference method. For example, let’s customise the attributes member of the
following DimCoordMetadata,

>>> attributes = {"grinning face": "", "neutral face": ""}
>>> longitude.attributes = attributes
>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': '', 'neutral face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)

Then create another DimCoordMetadata with a different attributes dict, namely,

• the grinning face key has the same value,

• the neutral face key has a different value,

• the upside-down face key is new

>>> attributes = {"grinning face": "", "neutral face": "", "upside-down face": ""}
>>> metadata = longitude.metadata._replace(attributes=attributes)
>>> metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={'grinning face': '', 'neutral face': '', 'upside-
→˓down face': ''}, coord_system=GeogCS(6371229.0), climatological=False,
→˓circular=False)

Now, let’s compare the two above instances and see what attributes member differences we get,

>>> longitude.metadata.difference(metadata)
DimCoordMetadata(standard_name=None, long_name=None, var_name=None, units=None,
→˓attributes=({'neutral face': ''}, {'neutral face': '', 'upside-down face': ''}),
→˓coord_system=None, climatological=None, circular=None)

Diffing Like With Like

As discussed in Comparing Like With Like, it only makes sense to determine the difference between similar
metadata class instances. However, note that the exception to the rule still applies here i.e., support is provided
between CoordMetadata and DimCoordMetadata metadata classes.

For example, given the following AuxCoord and DimCoord,

>>> forecast_period = cube.coord("forecast_period")
>>> latitude = cube.coord("latitude")

We can inspect their associated metadata,

166 Chapter 18. Metadata

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Iris, Release 3.0.1

>>> forecast_period.metadata
CoordMetadata(standard_name='forecast_period', long_name=None, var_name='forecast_
→˓period', units=Unit('hours'), attributes={}, coord_system=None,
→˓climatological=False)
>>> latitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Before comparing them to determine the values of metadata members that are different,

>>> forecast_period.metadata.difference(latitude.metadata)
CoordMetadata(standard_name=('forecast_period', 'latitude'), long_name=None, var_
→˓name=('forecast_period', 'latitude'), units=(Unit('hours'), Unit('degrees')),
→˓attributes=None, coord_system=(None, GeogCS(6371229.0)), climatological=None)

>>> latitude.metadata.difference(forecast_period.metadata)
DimCoordMetadata(standard_name=('latitude', 'forecast_period'), long_name=None, var_
→˓name=('latitude', 'forecast_period'), units=(Unit('degrees'), Unit('hours')),
→˓attributes=None, coord_system=(GeogCS(6371229.0), None), climatological=None,
→˓circular=(False, None))

In general, however, comparing different metadata classes will result in a TypeError being raised,

>>> cube.metadata.difference(longitude.metadata)
Traceback (most recent call last):
TypeError: Cannot differ 'CubeMetadata' with <class 'iris.common.metadata.
→˓DimCoordMetadata'>.

Metadata Combination

So far we’ve seen how to compare metadata, and also how to determine the difference between metadata. Now we
take the next step, and explore how to combine metadata together using the combine metadata class method.

For example, consider the following CubeMetadata,

>>> cube.metadata
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, cell_methods=(CellMethod(method='mean', coord_
→˓names=('time',), intervals=('6 hour',), comments=()),))

We can perform the identity function by comparing the metadata with itself,

>>> metadata = cube.metadata.combine(cube.metadata)
>>> cube.metadata == metadata
True

As you might expect, combining identical metadata returns metadata that is also identical.

The combine method will always return a new metadata class instance, where each metadata member is either
None or populated with a common value. Let’s clarify this, by combining our above CubeMetadata with another
instance that’s identical apart from its standard_name member, which is replaced with a different value,

18.3. Common Metadata API 167

Iris, Release 3.0.1

>>> metadata = cube.metadata._replace(standard_name="air_pressure_at_sea_level")
>>> metadata != cube.metadata
True
>>> metadata.combine(cube.metadata)
CubeMetadata(standard_name=None, long_name=None, var_name='air_temperature',
→˓units=Unit('K'), attributes={'STASH': STASH(model=1, section=3, item=236), 'source
→˓': 'Data from Met Office Unified Model 6.05', 'Model scenario': 'A1B', 'Conventions
→˓': 'CF-1.5'}, cell_methods=(CellMethod(method='mean', coord_names=('time',),
→˓intervals=('6 hour',), comments=()),))

The combinemethod combines metadata by performing a strict comparison between each of the associated metadata
member values,

• if the values are different, then the combined result is None

• otherwise, the combined result is the common value

Let’s reinforce this behaviour, but this time by combining metadata where the attributes dict member is different,
where,

• the STASH and source keys are missing,

• the Model scenario key has the same value,

• the Conventions key has a different value,

• the grinning face key is new

>>> attributes = {"Model scenario": "A1B", "Conventions": "CF-1.8", "grinning face": "
→˓" }
>>> metadata = cube.metadata._replace(attributes=attributes)
>>> metadata != cube.metadata
True
>>> metadata.combine(cube.metadata).attributes
{'Model scenario': 'A1B'}

The combined result for the attributes member only contains those common keys with common values.

Note that, the combine method is commutative,

>>> cube.metadata.combine(metadata) == metadata.combine(cube.metadata)
True

Although, this is only the case when combining instances of the same metadata class. This is explored in a little further
detail next.

Combine Like With Like

Akin to the equal and difference methods, only instances of similar metadata classes can be combined, otherwise a
TypeError is raised,

>>> cube.metadata.combine(longitude.metadata)
Traceback (most recent call last):
TypeError: Cannot combine 'CubeMetadata' with <class 'iris.common.metadata.
→˓DimCoordMetadata'>.

Again, however, the exception to the rule also applies here i.e., support is provided between CoordMetadata and
DimCoordMetadata metadata classes.

168 Chapter 18. Metadata

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Iris, Release 3.0.1

For example, we can combine the metadata of the following AuxCoord and DimCoord,

>>> forecast_period = cube.coord("forecast_period")
>>> longitude = cube.coord("longitude")

First, let’s see their associated metadata,

>>> forecast_period.metadata
CoordMetadata(standard_name='forecast_period', long_name=None, var_name='forecast_
→˓period', units=Unit('hours'), attributes={}, coord_system=None,
→˓climatological=False)
>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Before combining their metadata together,

>>> forecast_period.metadata.combine(longitude.metadata)
CoordMetadata(standard_name=None, long_name=None, var_name=None, units=None,
→˓attributes={}, coord_system=None, climatological=False)
>>> longitude.metadata.combine(forecast_period.metadata)
DimCoordMetadata(standard_name=None, long_name=None, var_name=None, units=None,
→˓attributes={}, coord_system=None, climatological=False, circular=None)

However, note that commutativity in this case cannot be honoured, for obvious reasons.

Metadata Conversion

In general, the equal, difference, and combine methods only support operations on instances of the same metadata
class (see exception to the rule).

However, metadata may be converted from one metadata class to another using the from_metadata class method.
For example, given the following CubeMetadata,

>>> cube.metadata
CubeMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, cell_methods=(CellMethod(method='mean', coord_
→˓names=('time',), intervals=('6 hour',), comments=()),))

We can easily convert it to a DimCoordMetadata instance using from_metadata,

>>> DimCoordMetadata.from_metadata(cube.metadata)
DimCoordMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, coord_system=None, climatological=None,
→˓circular=None)

By examining Table 18.1, we can see that the Cube and DimCoord container classes share the following common
metadata members,

• standard_name,

• long_name,

• var_name,

18.3. Common Metadata API 169

Iris, Release 3.0.1

• units,

• attributes

As such, all of these metadata members of the resultant DimCoordMetadata instance are populated from the
associated CubeMetadata instance members. However, a CubeMetadata class does not contain the following
DimCoordMetadata members,

• coords_system,

• climatological,

• circular

Thus these particular metadata members are set to None in the resultant DimCoordMetadata instance.

Note that, the from_metadata method is also available on a metadata class instance,

>>> longitude.metadata.from_metadata(cube.metadata)
DimCoordMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, coord_system=None, climatological=None,
→˓circular=None)

Metadata Assignment

The metadata property available on each Iris CF Conventions container class (Table 18.2) can not only be used to
get the metadata of an instance, but also to set the metadata on an instance.

For example, given the following DimCoordMetadata of the longitude coordinate,

>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

We can assign to it directly using the DimCoordMetadata of the latitude coordinate,

>>> latitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)
>>> longitude.metadata = latitude.metadata
>>> longitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

170 Chapter 18. Metadata

https://cfconventions.org/

Iris, Release 3.0.1

Assign by Iterable

It is also possible to assign to the metadata property of an Iris CF Conventions container with an iterable containing
the correct number of associated member values, e.g.,

>>> values = [getattr(latitude, member) for member in latitude.metadata._fields]
>>> longitude.metadata = values
>>> longitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Assign by Namedtuple

A namedtuple may also be used to assign to the metadata property of an Iris CF Conventions container. For
example, let’s first create a custom namedtuple class,

>>> from collections import namedtuple
>>> Metadata = namedtuple("Metadata", ["standard_name", "long_name", "var_name",
→˓"units", "attributes", "coord_system", "climatological", "circular"])

Now create an instance of this custom namedtuple class, and populate it,

>>> metadata = Metadata(*values)
>>> metadata
Metadata(standard_name='latitude', long_name=None, var_name='latitude', units=Unit(
→˓'degrees'), attributes={}, coord_system=GeogCS(6371229.0), climatological=False,
→˓circular=False)

Now we can use the custom namedtuple instance to assign directly to the metadata of the longitude coordinate,

>>> longitude.metadata = metadata
>>> longitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Assign by Mapping

It is also possible to assign to the metadata property using a mapping, such as a dict,

>>> mapping = latitude.metadata._asdict()
>>> mapping
OrderedDict([('standard_name', 'latitude'), ('long_name', None), ('var_name',
→˓'latitude'), ('units', Unit('degrees')), ('attributes', {}), ('coord_system',
→˓GeogCS(6371229.0)), ('climatological', False), ('circular', False)])
>>> longitude.metadata = mapping
>>> longitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Support is also provided for assigning a partial mapping, for example,

18.3. Common Metadata API 171

https://cfconventions.org/
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://cfconventions.org/
https://docs.python.org/3/glossary.html#term-mapping
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Iris, Release 3.0.1

>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)
>>> longitude.metadata = dict(var_name="lat", units="radians", circular=True)
>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='lat',
→˓units=Unit('radians'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=True)

Indeed, it’s also possible to assign to the metadata property with a different metadata class instance,

>>> longitude.metadata
DimCoordMetadata(standard_name='longitude', long_name=None, var_name='longitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)
>>> longitude.metadata = cube.metadata
>>> longitude.metadata
DimCoordMetadata(standard_name='air_temperature', long_name=None, var_name='air_
→˓temperature', units=Unit('K'), attributes={'Conventions': 'CF-1.5', 'STASH':
→˓STASH(model=1, section=3, item=236), 'Model scenario': 'A1B', 'source': 'Data from
→˓Met Office Unified Model 6.05'}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Note that, only common metadata members will be assigned new associated values. All other metadata members will
be left unaltered.

172 Chapter 18. Metadata

CHAPTER

NINETEEN

LENIENT METADATA

This section discusses lenient metadata; what it is, what it means, and how you can perform lenient rather than strict
operations with your metadata.

19.1 Introduction

As discussed in Metadata, a rich, common metadata API is available within Iris that supports metadata equality,
difference, combination, and also conversion.

The common metadata API is implemented through the metadata property on each of the Iris CF Conventions class
containers (Table 18.2), and provides a common gateway for users to easily manage and manipulate their metadata in
a consistent and unified way.

This is primarily all thanks to the metadata classes (Table 18.2) that support the necessary state and behaviour required
by the common metadata API. Namely, it is the equal (__eq__), difference and combine methods that
provide this rich metadata behaviour, all of which are explored more fully in Metadata.

19.2 Strict Behaviour

The feature that is common between the equal, difference and combine metadata class methods, is that they
all perform strict metadata member comparisons by default.

The strict behaviour implemented by these methods can be summarised as follows, where X and Y are any objects that
are non-identical,

Table 19.1: - Strict equality
Left Right equal
X Y False
Y X False
X X True
X None False
None X False

173

https://cfconventions.org/

Iris, Release 3.0.1

Table 19.2: - Strict difference
Left Right difference
X Y (X, Y)
Y X (Y, X)
X X None
X None (X, None)
None X (None, X)

Table 19.3: - Strict combination
Left Right combine
X Y None
Y X None
X X X
X None None
None X None

This type of strict behaviour does offer obvious benefit and value. However, it can be unnecessarily restrictive. For
example, consider the metadata of the following latitude coordinate,

>>> latitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={}, coord_system=GeogCS(6371229.0),
→˓climatological=False, circular=False)

Now, let’s create a doctored version of this metadata with a different var_name,

>>> metadata = latitude.metadata._replace(var_name=None)
>>> metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name=None, units=Unit(
→˓'degrees'), attributes={}, coord_system=GeogCS(6371229.0), climatological=False,
→˓circular=False)

Clearly, these metadata are different,

>>> metadata != latitude.metadata
True
>>> metadata.difference(latitude.metadata)
DimCoordMetadata(standard_name=None, long_name=None, var_name=(None, 'latitude'),
→˓units=None, attributes=None, coord_system=None, climatological=None, circular=None)

And yet, they both have the same name, which some may find slightly confusing (see name() for clarification)

>>> metadata.name()
'latitude'
>>> latitude.name()
'latitude'

Resolving this metadata inequality can only be overcome by ensuring that each metadata member precisely matches.

If your workflow demands such metadata rigour, then the default strict behaviour of the common metadata API will
satisfy your needs. Typically though, such strictness is not necessary, and as of Iris 3.0.0 an alternative more
practical behaviour is available.

174 Chapter 19. Lenient Metadata

Iris, Release 3.0.1

19.3 Lenient Behaviour

Lenient metadata aims to offer a practical, common sense alternative to the strict rigour of the default Iris metadata
behaviour. It is intended to be complementary, and suitable for those users with a more relaxed requirement regarding
their metadata.

The lenient behaviour that is implemented as an alternative to the strict equality, strict difference, and strict combina-
tion can be summarised as follows,

Table 19.4: - Lenient equality
Left Right equal
X Y False
Y X False
X X True
X None True
None X True

Table 19.5: - Lenient difference
Left Right difference
X Y (X, Y)
Y X (Y, X)
X X None
X None None
None X None

Table 19.6: - Lenient combination
Left Right combine
X Y None
Y X None
X X X
X None X
None X X

Lenient behaviour is enabled for the equal, difference, and combinemetadata class methods via the lenient
keyword argument, which is False by default. Let’s first explore some examples of lenient equality, difference and
combination, before going on to clarify which metadata members adopt lenient behaviour for each of the metadata
classes.

19.3.1 Lenient Equality

Lenient equality is enabled using the lenient keyword argument, therefore we are forced to use the equal method
rather than the == operator (__eq__). Otherwise, the equal method and == operator are both functionally equiva-
lent.

For example, consider the previous strict example, where two separate latitude coordinates are compared, each
with different var_name members,

>>> metadata.equal(latitude.metadata, lenient=True)
True

19.3. Lenient Behaviour 175

Iris, Release 3.0.1

Unlike strict comparison, lenient comparison is a little more forgiving. In this case, leniently comparing something
with nothing (None) will always be True; it’s the graceful compromise to the strict alternative.

So let’s take the opportunity to reinforce this a little further before moving on, by leniently comparing different
attributes dictionaries; a constant source of strict contention.

Firstly, populate the metadata of our latitude coordinate appropriately,

>>> attributes = {"grinning face": "", "neutral face": ""}
>>> latitude.attributes = attributes
>>> latitude.metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={'grinning face': '', 'neutral face': ''}, coord_
→˓system=GeogCS(6371229.0), climatological=False, circular=False)

Then create another DimCoordMetadata with a different attributes dict, namely,

• the grinning face key is missing,

• the neutral face key has the same value, and

• the upside-down face key is new

>>> attributes = {"neutral face": "", "upside-down face": ""}
>>> metadata = latitude.metadata._replace(attributes=attributes)
>>> metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={'neutral face': '', 'upside-down face': ''},
→˓coord_system=GeogCS(6371229.0), climatological=False, circular=False)

Now, compare our metadata,

>>> metadata.equal(latitude.metadata)
False
>>> metadata.equal(latitude.metadata, lenient=True)
True

Again, lenient equality (Table 19.4) offers a more forgiving and practical alternative to strict behaviour.

19.3.2 Lenient Difference

Similar to Lenient Equality, the lenient differencemethod (Table 19.5) considers there to be no difference between
comparing something with nothing (None). This working assumption is not naively applied to all metadata members,
but rather a more pragmatic approach is adopted, as discussed later in Lenient Members.

Again, lenient behaviour for the differencemetadata class method is enabled by the lenient keyword argument.
For example, consider again the previous strict example involving our latitude coordinate,

>>> metadata.difference(latitude.metadata)
DimCoordMetadata(standard_name=None, long_name=None, var_name=(None, 'latitude'),
→˓units=None, attributes=None, coord_system=None, climatological=None, circular=None)
>>> metadata.difference(latitude.metadata, lenient=True) is None
True

And revisiting our slightly altered attributesmember comparison example, brings home the benefits of the lenient
difference behaviour. So, given our latitude coordinate with its populated attributes dictionary,

>>> latitude.attributes
{'grinning face': '', 'neutral face': ''}

176 Chapter 19. Lenient Metadata

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict

Iris, Release 3.0.1

We create another DimCoordMetadata with a dissimilar attributes member, namely,

• the grinning face key is missing,

• the neutral face key has a different value, and

• the upside-down face key is new

>>> attributes = {"neutral face": "", "upside-down face": ""}
>>> metadata = latitude.metadata._replace(attributes=attributes)
>>> metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={'neutral face': '', 'upside-down face': ''},
→˓coord_system=GeogCS(6371229.0), climatological=False, circular=False)

Now comparing the strict and lenient behaviour for the difference method, highlights the change in how such
dissimilar metadata is treated gracefully,

>>> metadata.difference(latitude.metadata).attributes
{'upside-down face': '', 'neutral face': ''}, {'neutral face': '', 'grinning face': '
→˓'}
>>> metadata.difference(latitude.metadata, lenient=True).attributes
{'neutral face': ''}, {'neutral face': ''}

19.3.3 Lenient Combination

The behaviour of the lenient combine metadata class method is outlined in Table 19.6, and as with Lenient Equality
and Lenient Difference is enabled through the lenient keyword argument.

The difference in behaviour between lenient and strict combination is centred around the lenient handling of combin-
ing something with nothing (None) to return something. Whereas strict combination will only return a result from
combining identical objects.

Again, this is best demonstrated through a simple example of attempting to combine partially overlapping
attributes member dictionaries. For example, given the following attributes dictionary of our favoured
latitude coordinate,

>>> latitude.attributes
{'grinning face': '', 'neutral face': ''}

We create another DimCoordMetadata with overlapping keys and values, namely,

• the grinning face key is missing,

• the neutral face key has the same value, and

• the upside-down face key is new

>>> attributes = {"neutral face": "", "upside-down face": ""}
>>> metadata = latitude.metadata._replace(attributes=attributes)
>>> metadata
DimCoordMetadata(standard_name='latitude', long_name=None, var_name='latitude',
→˓units=Unit('degrees'), attributes={'neutral face': '', 'upside-down face': ''},
→˓coord_system=GeogCS(6371229.0), climatological=False, circular=False)

Comparing the strict and lenient behaviour of combine side-by-side highlights the difference in behaviour, and the
advantages of lenient combination for more inclusive, richer metadata,

19.3. Lenient Behaviour 177

Iris, Release 3.0.1

>>> metadata.combine(latitude.metadata).attributes
{'neutral face': ''}
>>> metadata.combine(latitude.metadata, lenient=True).attributes
{'neutral face': '', 'upside-down face': '', 'grinning face': ''}

19.3.4 Lenient Members

Lenient Behaviour is not applied regardlessly across all metadata members participating in a lenient equal,
difference or combine operation. Rather, a more pragmatic application is employed based on the CF Con-
ventions definition of the member, and whether being lenient would result in erroneous behaviour or interpretation.

Table 19.7: - Lenient member participation
Metadata Class Member Behaviour
All metadata classes† standard_name lenient‡
All metadata classes† long_name lenient‡
All metadata classes† var_name lenient‡
All metadata classes† units strict
All metadata classes† attributes lenient
CellMeasureMetadata measure strict
CoordMetadata, DimCoordMetadata coord_system strict
CoordMetadata, DimCoordMetadata climatological strict
CubeMetadata cell_methods strict
DimCoordMetadata circular strict §

Key
† - Applies to all metadata classes including AncillaryVariableMetadata, which has no other specialised
members
‡ - See Special Lenient Name Behaviour for standard_name, long_name, and var_name
§ - The circular is ignored for operations between CoordMetadata and DimCoordMetadata

In summary, only standard_name, long_name, var_name and the attributes members are treated le-
niently. All other members are considered to represent fundamental metadata that cannot, by their nature, be consider
equivalent to metadata that is missing or None. For example, a Cube with units of ms-1 cannot be considered
equivalent to another Cube with units of unknown; this would be a false and dangerous scientific assumption to
make.

Similar arguments can be made for the measure, coord_system, climatological, cell_methods, and
circular members, all of which are treated with strict behaviour, regardlessly.

178 Chapter 19. Lenient Metadata

https://cfconventions.org/
https://cfconventions.org/

Iris, Release 3.0.1

Special Lenient Name Behaviour

The standard_name, long_name and var_name have a closer association with each other compared to all other
metadata members, as they all underpin the functionality provided by the name() method. It is imperative that the
name() derived from metadata remains constant for strict and lenient equality alike.

As such, these metadata members have an additional layer of behaviour enforced during Lenient Equality in order to
ensure that the identity or name of metadata does not change due to a side-effect of lenient comparison.

For example, if simple lenient equality behaviour was applied to the standard_name, long_name and
var_name, the following would be considered not equal,

Member Left Right
standard_name None latitude
long_name latitude None
var_name lat latitude

Both the Left and Right metadata would have the same name() by definition i.e., latitude. However, lenient
equality would fail due to the difference in var_name.

To account for this, lenient equality is performed by two simple consecutive steps:

• ensure that the result returned by the name() method is the same for the metadata being compared, then

• only perform lenient equality between the standard_name and long_name i.e., the var_name member
is not compared explicitly, as its value may have been accounted for through name() equality

19.3. Lenient Behaviour 179

Iris, Release 3.0.1

180 Chapter 19. Lenient Metadata

CHAPTER

TWENTY

LENIENT CUBE MATHS

This section provides an overview of lenient cube maths. In particular, it explains what lenient maths involves, clarifies
how it differs from normal or strict cube maths, and demonstrates how you can exercise fine control over whether your
cube maths operations are lenient or strict.

Note that, lenient cube maths is the default behaviour of Iris from version 3.0.0.

20.1 Introduction

Lenient maths stands somewhat on the shoulders of giants. If you’ve not already done so, you may want to recap the
material discussed in the following sections,

• Cube Maths,

• Metadata,

• Lenient Metadata

In addition to this, cube maths leans heavily on the resolve module, which provides the necessary infrastructure
required by Iris to analyse and combine each Cube operand involved in a maths operation into the resultant Cube. It
may be worth while investing some time to understand how the Resolve class underpins cube maths, and consider
how it may be used in general to combine or resolve cubes together.

Given these prerequisites, recall that lenient behaviour introduced and discussed the concept of lenient metadata; a
more pragmatic and forgiving approach to comparing, combining and understanding the differences between your
metadata (Table 18.1). The lenient metadata philosophy introduced there is extended to cube maths, with the view
to also preserving as much common coordinate (Table 18.2) information, as well as common metadata, between the
participating Cube operands as possible.

Let’s consolidate our understanding of lenient and strict cube maths through a practical worked example, which we’ll
explore together next.

20.2 Lenient Example

Consider the following Cube of air_potential_temperature, which has an atmosphere hybrid height para-
metric vertical coordinate, and represents the output of an low-resolution global atmospheric experiment,

>>> print(experiment)
air_potential_temperature / (K) (model_level_number: 15; grid_latitude: 100; grid_
→˓longitude: 100)

Dimension coordinates:
model_level_number x -

→˓ - (continues on next page)

181

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#atmosphere-hybrid-height-coordinate
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#atmosphere-hybrid-height-coordinate

Iris, Release 3.0.1

(continued from previous page)

grid_latitude - x
→˓ -

grid_longitude - -
→˓ x

Auxiliary coordinates:
atmosphere_hybrid_height_coordinate x -

→˓ -
sigma x -

→˓ -
surface_altitude - x

→˓ x
Derived coordinates:

altitude x x
→˓ x

Scalar coordinates:
forecast_period: 0.0 hours
forecast_reference_time: 2009-09-09 17:10:00
time: 2009-09-09 17:10:00

Attributes:
Conventions: CF-1.5
STASH: m01s00i004
experiment-id: RT3 50
source: Data from Met Office Unified Model 7.04

Consider also the following Cube, which has the same global spatial extent, and acts as a control,

>>> print(control)
air_potential_temperature / (K) (grid_latitude: 100; grid_longitude: 100)

Dimension coordinates:
grid_latitude x -
grid_longitude - x

Scalar coordinates:
model_level_number: 1
time: 2009-09-09 17:10:00

Attributes:
Conventions: CF-1.7
STASH: m01s00i004
source: Data from Met Office Unified Model 7.04

Now let’s subtract these cubes in order to calculate a simple difference,

>>> difference = experiment - control
>>> print(difference)
unknown / (K) (model_level_number: 15; grid_latitude: 100; grid_
→˓longitude: 100)

Dimension coordinates:
model_level_number x -

→˓ -
grid_latitude - x

→˓ -
grid_longitude - -

→˓ x
Auxiliary coordinates:

atmosphere_hybrid_height_coordinate x -
→˓ -

sigma x -
→˓ -

(continues on next page)

182 Chapter 20. Lenient Cube Maths

Iris, Release 3.0.1

(continued from previous page)

surface_altitude - x
→˓ x

Derived coordinates:
altitude x x

→˓ x
Scalar coordinates:

forecast_period: 0.0 hours
forecast_reference_time: 2009-09-09 17:10:00
time: 2009-09-09 17:10:00

Attributes:
experiment-id: RT3 50
source: Data from Met Office Unified Model 7.04

Note that, cube maths automatically takes care of broadcasting the dimensionality of the control up to that of the
experiment, in order to calculate the difference. This is performed only after ensuring that both the dimension
coordinates grid_latitude and grid_longitude are first leniently equivalent.

As expected, the resultant difference contains the HybridHeightFactory and all it’s associated auxiliary
coordinates. However, the scalar coordinates have been leniently combined to preserve as much coordinate informa-
tion as possible, and the attributes dictionaries have also been leniently combined. In addition, see what further
rationalisation is always performed by cube maths on the resultant metadata and coordinates.

Also, note that the model_level_number scalar coordinate from the control has be superseded by the simi-
larly named dimension coordinate from the experiment in the resultant difference.

Now let’s compare and contrast this lenient result with the strict alternative. But before we do so, let’s first clarify how
to control the behaviour of cube maths.

20.3 Control the Behaviour

As stated earlier, lenient cube maths is the default behaviour from Iris 3.0.0. However, this behaviour may be
controlled via the thread-safe LENIENT["maths"] runtime option,

>>> from iris.common import LENIENT
>>> print(LENIENT)
Lenient(maths=True)

Which may be set and applied globally thereafter for Iris within the current thread of execution,

>>> LENIENT["maths"] = False
>>> print(LENIENT)
Lenient(maths=False)

Or alternatively, temporarily alter the behaviour of cube maths only within the scope of the LENIENT context manager,

>>> print(LENIENT)
Lenient(maths=True)
>>> with LENIENT.context(maths=False):
... print(LENIENT)
...
Lenient(maths=False)
>>> print(LENIENT)
Lenient(maths=True)

20.3. Control the Behaviour 183

https://docs.python.org/3/library/contextlib.html

Iris, Release 3.0.1

20.4 Strict Example

Now that we know how to control the underlying behaviour of cube maths, let’s return to our lenient example, but this
time perform strict cube maths instead,

>>> with LENIENT.context(maths=False):
... difference = experiment - control
...
>>> print(difference)
unknown / (K) (model_level_number: 15; grid_latitude: 100; grid_
→˓longitude: 100)

Dimension coordinates:
model_level_number x -

→˓ -
grid_latitude - x

→˓ -
grid_longitude - -

→˓ x
Auxiliary coordinates:

atmosphere_hybrid_height_coordinate x -
→˓ -

sigma x -
→˓ -

surface_altitude - x
→˓ x

Derived coordinates:
altitude x x

→˓ x
Scalar coordinates:

time: 2009-09-09 17:10:00
Attributes:

source: Data from Met Office Unified Model 7.04

Although the numerical result of this strict cube maths operation is identical, it is not as rich in metadata as the lenient
alternative. In particular, it does not contain the forecast_period and forecast_reference_time scalar
coordinates, or the experiment-id in the attributes dictionary.

This is because strict cube maths, in general, will only return common metadata and common coordinates that are
strictly equivalent.

20.5 Finer Detail

In general, if you want to preserve as much metadata and coordinate information as possible during cube maths,
then opt to use the default lenient behaviour. Otherwise, favour the strict alternative if you require to enforce precise
metadata and coordinate commonality.

The following information may also help you decide whether lenient cube maths best suits your use case,

• lenient behaviour uses lenient equality to match the metadata of coordinates, which is more tolerant to certain
metadata differences,

• lenient behaviour uses lenient combination to create the metadata of coordinates on the resultant Cube,

• lenient behaviour will attempt to cover each dimension with a DimCoord in the resultant Cube, even though
only one Cube operand may describe that dimension,

184 Chapter 20. Lenient Cube Maths

Iris, Release 3.0.1

• lenient behaviour will attempt to include auxiliary coordinates in the resultant Cube that exist on only one
Cube operand,

• lenient behaviour will attempt to include scalar coordinates in the resultant Cube that exist on only one Cube
operand,

• lenient behaviour will add a coordinate to the resultant Cube with bounds, even if only one of the associated
matching coordinates from the Cube operands has bounds,

• strict and lenient behaviour both require that the points and bounds of matching coordinates from Cube
operands must be strictly equivalent. However, mismatching bounds of scalar coordinates are ignored i.e.,
a scalar coordinate that is common to both Cube operands, with equivalent points but different bounds, will be
added to the resultant Cube with but with no bounds

Additionally, cube maths will always perform the following rationalisation of the resultant Cube,

• clear the standard_name, long_name and var_name, defaulting the name() to unknown,

• clear the cell_methods,

• clear the cell_measures(),

• clear the ancillary_variables(),

• clear the STASH key from the attributes dictionary,

• assign the appropriate units

20.5. Finer Detail 185

Iris, Release 3.0.1

186 Chapter 20. Lenient Cube Maths

CHAPTER

TWENTYONE

GETTING INVOLVED

Iris is an Open Source project hosted on Github and as such anyone with a GitHub account may create an issue on our
Iris GitHub project page for raising:

• bug reports

• feature requests

• documentation improvements

The Iris GitHub project has been configured to use templates for each of the above issue types when creating a new
issue to ensure the appropriate information is provided.

A pull request may also be created by anyone who has become a contributor to Iris. Permissions to merge pull
requests to the main code base (master) are only given to core developers of Iris, this is to ensure a measure of
control.

To get started we suggest reading recent issues and pull requests for Iris.

If you are new to using GitHub we recommend reading the GitHub getting started

Note: For more information on becoming a contributor including a link to the Contributors Licence Agreement
(CLA) see the Governance section of the SciTools ogranization web site.

187

https://github.com/SciTools/iris
https://github.com/SciTools/iris/issues
https://github.com/SciTools/iris
https://github.com/SciTools/iris
https://github.com/scitools/iris/issues/new/choose
https://github.com/scitools/iris/issues/new/choose
https://github.com/SciTools/iris/pulls
https://github.com/SciTools/iris
https://github.com/SciTools/iris
https://github.com/SciTools/iris/issues
https://github.com/SciTools/iris/pulls
https://docs.github.com/en/github/getting-started-with-github
https://github.com/SciTools/scitools.org.uk/blob/master/contributors.json
https://scitools.org.uk/organisation.html#governance
https://github.com/SciTools

Iris, Release 3.0.1

188 Chapter 21. Getting Involved

CHAPTER

TWENTYTWO

WORKING WITH IRIS SOURCE CODE

22.1 Introduction

These pages describe a git and github workflow for the Iris project.

This is not a comprehensive git reference, it’s just a workflow for our own project. It’s tailored to the github hosting
service. You may well find better or quicker ways of getting stuff done with git, but these should get you started.

Tip: Please see the official git documentation for a complete list of git commands and cheat sheets.

22.2 Making Your own Copy (fork) of Iris

You need to do this only once. The instructions here are very similar to the instructions at http://help.github.com/
forking/, please see that page for more detail. We’re repeating some of it here just to give the specifics for the Iris
project, and to suggest some default names.

22.2.1 Set up and Configure a Github Account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access, see the generating sss keys for GitHub help on github
help.

22.2.2 Create Your own Forked Copy of Iris

1. Log into your github account.

2. Go to the Iris github home at Iris github.

3. Click on the fork button:

Now, after a short pause, you should find yourself at the home page for your own forked copy of Iris.

189

http://git-scm.com/
http://github.com
https://github.com/SciTools/iris
https://git-scm.com/docs
http://help.github.com/forking/
http://help.github.com/forking/
https://github.com/SciTools/iris
https://docs.github.com/en/github/authenticating-to-github/adding-a-new-ssh-key-to-your-github-account
http://help.github.com
http://help.github.com
https://github.com/SciTools/iris
https://github.com/SciTools/iris
https://github.com/SciTools/iris

Iris, Release 3.0.1

22.3 Set up Your Fork

First you follow the instructions for Making Your own Copy (fork) of Iris.

22.3.1 Overview

git clone git@github.com:your-user-name/iris.git
cd iris
git remote add upstream git://github.com/SciTools/iris.git

22.3.2 In Detail

Clone Your Fork

1. Clone your fork to the local computer with git clone git@github.com:your-user-name/iris.
git

2. Change directory to your new repo: cd iris. Then git branch -a to show you all branches. You’ll get
something like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and that you also have a remote connection to
origin/master. What remote repository is remote/origin? Try git remote -v to see the URLs
for the remote. They will point to your github fork.

Now you want to connect to the upstream Iris github repository, so you can merge in changes from trunk.

Linking Your Repository to the Upstream Repo

cd iris
git remote add upstream git://github.com/SciTools/iris.git

upstream here is just the arbitrary name we’re using to refer to the main Iris repository at Iris github.

Note that we’ve used git:// for the URL rather than git@. The git:// URL is read only. This means we that
we can’t accidentally (or deliberately) write to the upstream repo, and we are only going to use it to merge into our
own code.

Just for your own satisfaction, show yourself that you now have a new ‘remote’, with git remote -v, giving you
something like:

upstream git://github.com/SciTools/iris.git (fetch)
upstream git://github.com/SciTools/iris.git (push)
origin git@github.com:your-user-name/iris.git (fetch)
origin git@github.com:your-user-name/iris.git (push)

190 Chapter 22. Working With Iris Source Code

https://github.com/SciTools/iris
https://github.com/SciTools/iris
https://github.com/SciTools/iris

Iris, Release 3.0.1

22.4 Configure Git

22.4.1 Overview

Your personal git configurations are saved in the .gitconfig file in your home directory.

Here is an example .gitconfig file:

[user]
name = Your Name
email = you@yourdomain.example.com

[alias]
ci = commit -a
co = checkout
st = status
stat = status
br = branch
wdiff = diff --color-words

[core]
editor = vim

[merge]
summary = true

You can edit this file directly or you can use the git config --global command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file, or run the commands above.

22.4.2 In Detail

user.name and user.email

It is good practice to tell git who you are, for labelling any changes you make to the code. The simplest way to do this
is from the command line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which should now contain a user section with your name
and email:

22.4. Configure Git 191

http://git-scm.com/

Iris, Release 3.0.1

[user]
name = Your Name
email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com with your actual name and
email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout to git co. Or you may want to alias git
diff --color-words (which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents like this:

[alias]
ci = commit -a
co = checkout
st = status -a
stat = status -a
br = branch
wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
log = true

Or from the command line:

git config --global merge.log true

192 Chapter 22. Working With Iris Source Code

Iris, Release 3.0.1

Fancy Log Output

This is a very nice alias to get a fancy log output; it should go in the alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr)
→˓%C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45
→˓minutes ago) [Matthew Brett]

* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/
→˓master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/

* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2
→˓weeks ago) [Corran Webster]

* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be
→˓changed to a call on an Axes object - this is all very sketchy right now. (2 weeks
→˓ago) [Corr

* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan
→˓Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-
→˓axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan
→˓Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago)
→˓[Jonathan Terhorst]
| |\
| |/

22.5 Development Workflow

You already have your own forked copy of the iris repository, by following Making Your own Copy (fork) of Iris. You
have Set up Your Fork. You have configured git by following Configure Git. Now you are ready for some real work.

22.5.1 Workflow Summary

In what follows we’ll refer to the upstream iris master branch, as “trunk”.

• Don’t use your master (that is on your fork) branch for anything. Consider deleting it.

• When you are starting a new set of changes, fetch any changes from trunk, and start a new feature branch from
that.

• Make a new branch for each separable set of changes — “one task, one branch”.

22.5. Development Workflow 193

https://github.com/SciTools/iris

Iris, Release 3.0.1

• Name your branch for the purpose of the changes - e.g. bugfix-for-issue-14 or
refactor-database-code.

• If you can possibly avoid it, avoid merging trunk or any other branches into your feature branch while you are
working.

• If you do find yourself merging from trunk, consider Rebasing on Trunk

• Ask on the iris mailing list if you get stuck.

• Ask for code review!

This way of working helps to keep work well organized, with readable history. This in turn makes it easier for project
maintainers (that might be you) to see what you’ve done, and why you did it.

See linux git workflow for some explanation.

22.5.2 Consider Deleting Your Master Branch

It may sound strange, but deleting your own master branch can help reduce confusion about which branch you are
on. See deleting master on github for details.

22.5.3 Update the Mirror of Trunk

First make sure you have done Linking Your Repository to the Upstream Repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to point to the right commit. For
example, ‘trunk’ is the branch referred to by (remote/branchname) upstream/master - and if there have been
commits since you last checked, upstream/master will change after you do the fetch.

22.5.4 Make a New Feature Branch

When you are ready to make some changes to the code, you should start a new branch. Branches that are for a
collection of related edits are often called ‘feature branches’.

Making an new branch for each set of related changes will make it easier for someone reviewing your branch to see
what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us what the changes in the branch are
for. For example add-ability-to-fly, or buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github fork of iris. To do this, you git push this
new branch up to your github repo. Generally (if you followed the instructions in these pages, and by default), git will
have a link to your github repo, called origin. You push up to your own repo on github with:

git push origin my-new-feature

194 Chapter 22. Working With Iris Source Code

https://groups.google.com/forum/#!forum/scitools-iris
http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html
http://matthew-brett.github.com/pydagogue/gh_delete_master.html
http://github.com
https://github.com/SciTools/iris
http://schacon.github.com/git/git-push.html

Iris, Release 3.0.1

In git >= 1.7 you can ensure that the link is correctly set by using the --set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the my-new-feature branch in the github repo.

22.5.5 The Editing Workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In More Detail

1. Make some changes

2. See which files have changed with git status (see git status). You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

3. Check what the actual changes are with git diff (git diff).

4. Add any new files to version control git add new_file_name (see git add).

5. To commit all modified files into the local copy of your repo, do git commit -am 'A commit
message'. Note the -am options to commit. The m flag just signals that you’re going to type a message
on the command line. The a flag will automatically stage all files that have been modified and deleted.

6. To push the changes up to your forked repo on github, do a git push (see git push).

22.5.6 Testing Your Changes

Once you are happy with your changes, work thorough the Pull Request Checklist and make sure your branch passes
all the relevant tests.

22.5. Development Workflow 195

http://schacon.github.com/git/git-status.html
http://schacon.github.com/git/git-diff.html
http://schacon.github.com/git/git-add.html
http://schacon.github.com/git/git-push.html

Iris, Release 3.0.1

22.5.7 Ask for Your Changes to be Reviewed or Merged

When you are ready to ask for someone to review your code and consider a merge:

1. Go to the URL of your forked repo, say http://github.com/your-user-name/iris.

2. Use the ‘Switch Branches’ dropdown menu near the top left of the page to select the branch with your changes:

3. Click on the ‘Pull request’ button:

Enter a title for the set of changes, and some explanation of what you’ve done. Say if there is anything you’d
like particular attention for - like a complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your pull request message. This is still a
good way of getting some preliminary code review.

196 Chapter 22. Working With Iris Source Code

Iris, Release 3.0.1

22.5.8 Some Other Things you Might Want to do

Delete a Branch on Github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

Note the colon : before test-branch. See also: http://github.com/guides/remove-a-remote-branch

Several People Sharing a Single Repository

If you want to work on some stuff with other people, where you are all committing into the same repository, or even
the same branch, then just share it via github.

First fork iris into your account, as from Making Your own Copy (fork) of Iris.

Then, go to your forked repository github page, say http://github.com/your-user-name/iris, select
Settings, Manage Access and then Invite collaborator.

Note: For more information on sharing your repository see the GitHub documentation on Inviting collaborators.

Now all those people can do:

git clone git@githhub.com:your-user-name/iris.git

Remember that links starting with git@ use the ssh protocol and are read-write; links starting with git:// are
read-only.

Your collaborators can then commit directly into that repo with the usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore Your Repository

To see a graphical representation of the repository branches and commits:

gitk --all

To see a linear list of commits for this branch:

git log

Finally the Fancy Log Output lg alias will give you a reasonable text-based graph of the repository.

22.5. Development Workflow 197

http://github.com/guides/remove-a-remote-branch
https://docs.github.com/en/github/setting-up-and-managing-your-github-user-account/inviting-collaborators-to-a-personal-repository

Iris, Release 3.0.1

Rebasing on Trunk

For more information please see the official github documentation on git rebase.

198 Chapter 22. Working With Iris Source Code

https://docs.github.com/en/github/using-git/about-git-rebase

CHAPTER

TWENTYTHREE

CONTRIBUTING TO THE DOCUMENTATION

Documentation is important and we encourage any improvements that can be made. If you believe the documentation
is not clear please contribute a change to improve the documentation for all users.

Any change to the Iris project whether it is a bugfix, new feature or documentation update must use the Development
Workflow.

23.1 Requirements

The documentation uses specific packages that need to be present. Please see Installing Iris for instructions.

23.2 Building

The build can be run from the documentation directory iris/docs/iris/src.

The build output for the html is found in the _build/html sub directory. When updating the documentation ensure
the html build has no errors or warnings otherwise it may fail the automated cirrus-ci build.

Once the build is complete, if it is rerun it will only rebuild the impacted build artefacts so should take less time.

There is also an option to perform a build but skip the Gallery creation completely. This can be achieved via:

make html-noplot

If you wish to run a clean build you can run:

make clean
make html

This is useful for a final test before committing your changes.

Note: In order to preserve a clean build for the html, all warnings have been promoted to be errors to ensure they
are addressed. This only applies when make html is run.

199

https://cirrus-ci.com/github/SciTools/iris

Iris, Release 3.0.1

23.3 Testing

There are a ways to test various aspects of the documentation. The make commands shown below can be run in the
iris/docs/iris or iris/docs/iris/src directory.

Each Gallery entry has a corresponding test. To run the tests:

make gallerytest

Many documentation pages includes python code itself that can be run to ensure it is still valid or to demonstrate
examples. To ensure these tests pass run:

make doctest

See iris.cube.Cube.data for an example of using the doctest approach.

The hyperlinks in the documentation can be checked automatically. If there is a link that is known to work it can be
excluded from the checks by adding it to the linkcheck_ignore array that is defined in the conf.py. The hyperlink
check can be run via:

make linkcheck

If this fails check the output for the text broken and then correct or ignore the url.

Note: In addition to the automated cirrus-ci build of all the documentation build options above, the https:
//readthedocs.org/ service is also used. The configuration of this held in a file in the root of the github Iris project
named .readthedocs.yml.

23.4 Generating API Documentation

In order to auto generate the API documentation based upon the docstrings a custom set of python scripts are used,
these are located in the directory iris/docs/iris/src/sphinxext. Once the make html command has
been run, the output of these scripts can be found in iris/docs/iris/src/generated/api.

If there is a particularly troublesome module that breaks the make html you can exclude the module from
the API documentation. Add the entry to the exclude_modules tuple list in the iris/docs/iris/src/
sphinxext/generate_package_rst.py file.

23.5 Gallery

The Iris Gallery uses a sphinx extension named sphinx-gallery that auto generates reStructuredText (rst) files based
upon a gallery source directory that abides directory and filename convention.

The code for the gallery entries are in iris/docs/iris/gallery_code. Each sub directory in this directory is
a sub section of the gallery. The respective README.rst in each folder is included in the gallery output.

For each gallery entry there must be a corresponding test script located in iris/docs/iris/gallery_tests.

To add an entry to the gallery simple place your python code into the appropriate sub directory and name it with a
prefix of plot_. If your gallery entry does not fit into any existing sub directories then create a new directory and
place it in there.

The reStructuredText (rst) output of the gallery is located in iris/docs/iris/src/generated/gallery.

200 Chapter 23. Contributing to the Documentation

http://www.sphinx-doc.org/en/stable/ext/doctest.html
https://github.com/SciTools/iris/blob/master/docs/iris/src/conf.py
https://cirrus-ci.com/github/SciTools/iris
https://readthedocs.org/
https://readthedocs.org/
https://github.com/SciTools/iris
https://sphinx-gallery.github.io/stable/

Iris, Release 3.0.1

For more information on the directory structure and options please see the sphinx-gallery getting started documenta-
tion.

23.5. Gallery 201

https://sphinx-gallery.github.io/stable/getting_started.html

Iris, Release 3.0.1

202 Chapter 23. Contributing to the Documentation

CHAPTER

TWENTYFOUR

CONTRIBUTING TO THE CODE BASE

24.1 Code Formatting

To ensure a consistent code format throughout Iris, we recommend using tools to check the source directly.

• black for an opinionated coding auto-formatter

• flake8 linting checks

The preferred way to run these tools automatically is to setup and configure pre-commit.

You can install pre-commit in your development environment using pip:

$ pip install pre-commit

or alternatively using conda:

$ conda install -c conda-forge pre-commit

Note: If you have setup your Python environment using the guide Installing From Source (Developers) then
pre-commit should already be present.

In order to install the pre-commit git hooks defined in our .pre-commit-config.yaml file, you must now
run the following command from the root directory of Iris:

$ pre-commit install

Upon performing a git commit, your code will now be automatically formatted to the black configuration defined
in our pyproject.toml file, and linted according to our .flake8 configuration file. Note that, pre-commit
will automatically download and install the necessary packages for each .pre-commit-config.yaml git hook.

Additionally, you may wish to enable black for your preferred editor/IDE.

With the pre-commit configured, the output of performing a git commit will look similar to:

Check for added large files..Passed
Check for merge conflicts..Passed
Debug Statements (Python)............................(no files to check)Skipped
Don't commit to branch...Passed
black..(no files to check)Skipped
flake8...(no files to check)Skipped
[contribution_overhaul c8513187] this is my commit message
2 files changed, 10 insertions(+), 9 deletions(-)

203

https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/en/stable/
https://pre-commit.com/
https://black.readthedocs.io/en/stable/editor_integration.html#editor-integration

Iris, Release 3.0.1

Note: You can also run black and flake8 manually. Please see the their officially documentation for more information.

24.2 Docstrings

Every public object in the Iris package should have an appropriate docstring. This is important as the docstrings are
used by developers to understand the code and may be read directly in the source or via the Iris API.

This document has been influenced by the following PEP’s,

• Attribute Docstrings PEP 224

• Docstring Conventions PEP 257

For consistency always use:

• """triple double quotes""" around docstrings.

• r"""raw triple double quotes""" if you use any backslashes in your docstrings.

• u"""Unicode triple-quoted string""" for Unicode docstrings

All docstrings should be written in reST (reStructuredText) markup. See the reST Quick Start for more detail.

There are two forms of docstrings: single-line and multi-line docstrings.

24.2.1 Single-Line Docstrings

The single line docstring of an object must state the purpose of that object, known as the purpose section. This terse
overview must be on one line and ideally no longer than 80 characters.

24.2.2 Multi-Line Docstrings

Multi-line docstrings must consist of at least a purpose section akin to the single-line docstring, followed by a blank
line and then any other content, as described below. The entire docstring should be indented to the same level as the
quotes at the docstring’s first line.

Description

The multi-line docstring description section should expand on what was stated in the one line purpose section. The
description section should try not to document argument and keyword argument details. Such information should be
documented in the following arguments and keywords section.

204 Chapter 24. Contributing to the Code Base

https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/en/stable/
https://www.python.org/dev/peps/pep-0224
https://www.python.org/dev/peps/pep-0257

Iris, Release 3.0.1

Sample Multi-Line Docstring

Here is a simple example of a standard docstring:

def sample_routine(arg1, arg2, kwarg1="foo", kwarg2=None):
"""
Purpose section text goes here.

Description section longer text goes here.

Args:

* arg1 (numpy.ndarray):
First argument description.

* arg2 (numpy.ndarray):
Second argument description.

Kwargs:

* kwarg1 (string):
The first keyword argument. This argument description
can be multi-lined.

* kwarg2 (Boolean or None):
The second keyword argument.

Returns:
numpy.ndarray of arg1 * arg2

"""
pass

This would be rendered as:

documenting.docstrings_sample_routine.sample_routine(arg1, arg2,
kwarg1='foo',
kwarg2=None)

Purpose section text goes here.

Description section longer text goes here.

Args:

• arg1 (numpy.ndarray): First argument description.

• arg2 (numpy.ndarray): Second argument description.

Kwargs:

• kwarg1 (string): The first keyword argument. This argument description can be multi-lined.

• kwarg2 (Boolean or None): The second keyword argument.

Returns numpy.ndarray of arg1 * arg2

Additionally, a summary can be extracted automatically, which would result in:

documenting.
docstrings_sample_routine.
sample_routine(. . .)

Purpose section text goes here.

24.2. Docstrings 205

Iris, Release 3.0.1

24.2.3 Documenting Classes

The class constructor should be documented in the docstring for its __init__ or __new__method. Methods should
be documented by their own docstring, not in the class header itself.

If a class subclasses another class and its behaviour is mostly inherited from that class, its docstring should mention
this and summarise the differences. Use the verb “override” to indicate that a subclass method replaces a superclass
method and does not call the superclass method; use the verb “extend” to indicate that a subclass method calls the
superclass method (in addition to its own behaviour).

Attribute and Property Docstrings

Here is a simple example of a class containing an attribute docstring and a property docstring:

class ExampleClass:
"""
Class Summary

"""

def __init__(self, arg1, arg2):
"""
Purpose section description.

Description section text.

Args:

* arg1 (int):
First argument description.

* arg2 (float):
Second argument description.

Returns:
Boolean.

"""
self.a = arg1
"Attribute arg1 docstring."
self.b = arg2
"Attribute arg2 docstring."

@property
def square(self):

"""

(read-only) Purpose section description.

Returns:
int.

"""
return self.a * self.a

This would be rendered as:

206 Chapter 24. Contributing to the Code Base

Iris, Release 3.0.1

class documenting.docstrings_attribute.ExampleClass(arg1, arg2)
Purpose section description.

Description section text.

Args:

• arg1 (int): First argument description.

• arg2 (float): Second argument description.

Returns Boolean.

a
Attribute arg1 docstring.

b
Attribute arg2 docstring.

property square
(read-only) Purpose section description.

Returns int.

Note: The purpose section of the property docstring must state whether the property is read-only.

24.3 reST Quick Start

reST is used to create the documentation for Iris. It is used to author all of the documentation content including use in
docstrings where appropriate. For more information see Docstrings.

reST is a lightweight markup language intended to be highly readable in source format. This guide will cover some of
the more frequently used advanced reST markup syntaxes, for the basics of reST the following links may be useful:

• https://www.sphinx-doc.org/en/master/usage/restructuredtext/

• http://packages.python.org/an_example_pypi_project/sphinx.html

Reference documentation for reST can be found at http://docutils.sourceforge.net/rst.html.

24.3.1 Creating Links

Basic links can be created with `Text of the link <http://example.com>`_ which will look like Text
of the link

Documents in the same project can be cross referenced with the syntax :doc:`document_name` for example, to
reference the “docstrings” page :doc:`docstrings` creates the following link Docstrings

References can be created between sections by first making a “label” where you would like the link to point to ..
_name_of_reference:: the appropriate link can now be created with :ref:`name_of_reference` (note
the trailing underscore on the label)

Cross referencing other reference documentation can be achieved with the syntax :py:class:`zipfile.
ZipFile` which will result in links such as zipfile.ZipFile and numpy.ndarray.

24.3. reST Quick Start 207

http://en.wikipedia.org/wiki/ReStructuredText
https://github.com/SciTools/iris
https://www.sphinx-doc.org/en/master/usage/restructuredtext/
http://packages.python.org/an_example_pypi_project/sphinx.html
http://docutils.sourceforge.net/rst.html
http://example.com
http://example.com
https://docs.python.org/2.7/library/zipfile.html#zipfile.ZipFile
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

24.4 Deprecations

If you need to make a backwards-incompatible change to a public API1 that has been included in a release (e.g.
deleting a method), then you must first deprecate the old behaviour in at least one release, before removing/updating
it in the next major release.

24.4.1 Adding a Deprecation

Removing a Public API

The simplest form of deprecation occurs when you need to remove a public API. The public API in question is
deprecated for a period before it is removed to allow time for user code to be updated. Sometimes the deprecation is
accompanied by the introduction of a new public API.

Under these circumstances the following points apply:

• Using the deprecated API must result in a concise deprecation warning which is an instance of iris.
IrisDeprecation. It is easiest to call iris._deprecation.warn_deprecated(), which is a sim-
ple wrapper to warnings.warn() with the signature warn_deprecation(message, **kwargs).

• Where possible, your deprecation warning should include advice on how to avoid using the deprecated API. For
example, you might reference a preferred API, or more detailed documentation elsewhere.

• You must update the docstring for the deprecated API to include a Sphinx deprecation directive:

.. deprecated:: <VERSION>

where you should replace <VERSION> with the major and minor version of Iris in which this API is first
deprecated. For example: 1.8.

As with the deprecation warning, you should include advice on how to avoid using the deprecated API within
the content of this directive. Feel free to include more detail in the updated docstring than in the deprecation
warning.

• You should check the documentation for references to the deprecated API and update them as appropriate.

1 A name without a leading underscore in any of its components, with the exception of the iris.experimental and iris.tests pack-
ages.

Example public names are:
• iris.this.
• iris.this.that

Example private names are:
• iris._this
• iris.this._that
• iris._this.that
• iris._this._that
• iris.experimental.something
• iris.tests.get_data_path

208 Chapter 24. Contributing to the Code Base

http://semver.org/
https://docs.python.org/2.7/library/warnings.html#warnings.warn

Iris, Release 3.0.1

Changing a Default

When you need to change the default behaviour of a public API the situation is slightly more complex. The recom-
mended solution is to use the iris.FUTURE object. The iris.FUTURE object provides boolean attributes that
allow user code to control at run-time the default behaviour of corresponding public APIs. When a boolean attribute is
set to False it causes the corresponding public API to use its deprecated default behaviour. When a boolean attribute
is set to True it causes the corresponding public API to use its new default behaviour.

The following points apply in addition to those for removing a public API:

• You should add a new boolean attribute to iris.FUTURE (by modifying iris.Future) that controls the
default behaviour of the public API that needs updating. The initial state of the new boolean attribute should be
False. You should name the new boolean attribute to indicate that setting it to True will select the new default
behaviour.

• You should include a reference to this iris.FUTURE flag in your deprecation warning and corresponding
Sphinx deprecation directive.

24.4.2 Removing a Deprecation

When the time comes to make a new major release you should locate any deprecated APIs within the code that satisfy
the one release minimum period described previously. Locating deprecated APIs can easily be done by searching for
the Sphinx deprecation directives and/or deprecation warnings.

Removing a Public API

The deprecated API should be removed and any corresponding documentation and/or example code should be re-
moved/updated as appropriate.

Changing a Default

• You should update the initial state of the relevant boolean attribute of iris.FUTURE to True.

• You should deprecate setting the relevant boolean attribute of iris.Future in the same way as described in
Removing a Public API.

24.5 Testing

24.5.1 Test Categories

There are two main categories of tests within Iris:

• Unit Tests

• Integration Tests

Ideally, all code changes should be accompanied by one or more unit tests, and by zero or more integration tests.

But if in any doubt about what tests to add or how to write them please feel free to submit a pull-request in any state
and ask for assistance.

24.5. Testing 209

Iris, Release 3.0.1

Unit Tests

Code changes should be accompanied by enough unit tests to give a high degree of confidence that the change works
as expected. In addition, the unit tests can help describe the intent behind a change.

The docstring for each test module must state the unit under test. For example:

"""Unit tests for the `iris.experimental.raster.export_geotiff`
function."""

All unit tests must be placed and named according to the following structure:

Classes

When testing a class all the tests must reside in the module:

lib/iris/tests/unit/<fully/qualified/module>/test_<ClassName>.py

Within this test module each tested method must have one or more corresponding test classes, for example:

• Test_<name of public method>

• Test_<name of public method>__<aspect of method>

And within those test classes, the test methods must be named according to the aspect of the tested method which they
address.

Examples:

All unit tests for iris.cube.Cube must reside in:

lib/iris/tests/unit/cube/test_Cube.py

Within that file the tests might look something like:

Tests for the Cube.xml() method.
class Test_xml(tests.IrisTest):

def test_some_general_stuff(self):
...

Tests for the Cube.xml() method, focussing on the behaviour of
the checksums.
class Test_xml__checksum(tests.IrisTest):

def test_checksum_ignores_masked_values(self):
...

Tests for the Cube.add_dim_coord() method.
class Test_add_dim_coord(tests.IrisTest):

def test_normal_usage(self):
...

def test_coord_already_present(self):
...

210 Chapter 24. Contributing to the Code Base

Iris, Release 3.0.1

Functions

When testing a function all the tests must reside in the module:

lib/iris/tests/unit/<fully/qualified/module>/test_<function_name>.py

Within this test module there must be one or more test classes, for example:

• Test

• TestAspectOfFunction

And within those test classes, the test methods must be named according to the aspect of the tested function which
they address.

Examples:

All unit tests for iris.experimental.raster.export_geotiff() must reside in:

lib/iris/tests/unit/experimental/raster/test_export_geotiff.py

Within that file the tests might look something like:

Tests focussing on the handling of different data types.
class TestDtypeAndValues(tests.IrisTest):

def test_int16(self):
...

def test_int16_big_endian(self):
...

Tests focussing on the handling of different projections.
class TestProjection(tests.IrisTest):

def test_no_ellipsoid(self):
...

Integration Tests

Some code changes may require tests which exercise several units in order to demonstrate an important consequence
of their interaction which may not be apparent when considering the units in isolation.

These tests must be placed in the lib/iris/tests/integration folder. Unlike unit tests, there is no fixed
naming scheme for integration tests. But folders and files must be created as required to help developers lo-
cate relevant tests. It is recommended they are named according to the capabilities under test, e.g. metadata/
test_pp_preservation.py, and not named according to the module(s) under test.

24.5.2 Graphics Tests

Iris may be used to create various forms of graphical output; to ensure the output is consistent, there are automated
tests to check against known acceptable graphical output. See Running the Tests for more information.

At present graphical tests are used in the following areas of Iris:

• Module iris.tests.test_plot

• Module iris.tests.test_quickplot

• Gallery plots contained in docs/iris/gallery_tests.

24.5. Testing 211

Iris, Release 3.0.1

Challenges

Iris uses many dependencies that provide functionality, an example that applies here is matplotlib. For more informa-
tion on the dependences, see Installing Iris. When there are updates to the matplotlib or a dependency of matplotlib,
this may result in a change in the rendered graphical output. This means that there may be no changes to Iris, but due
to an updated dependency any automated tests that compare a graphical output to a known acceptable output may fail.
The failure may also not be visually perceived as it may be a simple pixel shift.

Testing Strategy

The Iris Cirrus-CI matrix defines multiple test runs that use different versions of Python to ensure Iris is working as
expected.

To make this manageable, the iris.tests.IrisTest_nometa.check_graphic test routine tests against
multiple alternative acceptable results. It does this using an image hash comparison technique which avoids storing
reference images in the Iris repository itself.

This consists of:

• The iris.tests.IrisTest_nometa.check_graphic function uses a perceptual image hash of the
outputs (see https://github.com/JohannesBuchner/imagehash) as the basis for checking test results.

• The hashes of known acceptable results for each test are stored in a lookup dictionary, saved to the repo file
lib/iris/tests/results/imagerepo.json (link) .

• An actual reference image for each hash value is stored in a separate public repository https://github.com/
SciTools/test-iris-imagehash.

• The reference images allow human-eye assessment of whether a new output is judged to be close enough to the
older ones, or not.

• The utility script iris/tests/idiff.py automates checking, enabling the developer to easily compare
proposed new acceptable result images against the existing accepted reference images, for each failing test.

Reviewing Failing Tests

When you find that a graphics test in the Iris testing suite has failed, following changes in Iris or the run dependencies,
this is the process you should follow:

1. Create a new, empty directory to store temporary image results, at the path lib/iris/tests/
result_image_comparison in your Iris repository checkout.

2. In your Iris repo root directory, run the relevant (failing) tests directly as python scripts, or by using a com-
mand such as:

python -m unittest discover paths/to/test/files

3. In the iris/lib/iris/tests folder, run the command:

python idiff.py

This will open a window for you to visually inspect side-by-side old, new and difference images for each failed
graphics test. Hit a button to either accept, reject or skip each new result.

If the change is accepted:

• the imagehash value of the new result image is added into the relevant set of ‘valid result hashes’ in the
image result database file, tests/results/imagerepo.json

212 Chapter 24. Contributing to the Code Base

https://matplotlib.org/
https://matplotlib.org/
https://github.com/SciTools/iris
https://github.com/scitools/iris/blob/master/.cirrus.yml
https://github.com/JohannesBuchner/imagehash
https://github.com/SciTools/iris/blob/master/lib/iris/tests/results/imagerepo.json
https://github.com/SciTools/test-iris-imagehash
https://github.com/SciTools/test-iris-imagehash

Iris, Release 3.0.1

• the relevant output file in tests/result_image_comparison is renamed according to the image
hash value, as <hash>.png. A copy of this new PNG file must then be added into the reference image
repository at https://github.com/SciTools/test-iris-imagehash (See below).

If a change is skipped:

• no further changes are made in the repo.

• when you run iris/tests/idiff.py again, the skipped choice will be presented again.

If a change is rejected:

• the output image is deleted from result_image_comparison.

• when you run iris/tests/idiff.py again, the skipped choice will not appear, unless the relevant
failing test is re-run.

4. Now re-run the tests. The new result should now be recognised and the relevant test should pass. However,
some tests can perform multiple graphics checks within a single test case function. In those cases, any failing
check will prevent the following ones from being run, so a test re-run may encounter further (new) graphical
test failures. If that happens, simply repeat the check-and-accept process until all tests pass.

Add Your Changes to Iris

To add your changes to Iris, you need to make two pull requests (PR).

1. The first PR is made in the test-iris-imagehash repository, at https://github.com/SciTools/
test-iris-imagehash.

• First, add all the newly-generated referenced PNG files into the images/v4 directory. In
your Iris repo, these files are to be found in the temporary results folder iris/tests/
result_image_comparison.

• Then, to update the file which lists available images, v4_files_listing.txt, run from the project
root directory:

python recreate_v4_files_listing.py

• Create a PR proposing these changes, in the usual way.

2. The second PR is created in the Iris repository, and should only include the change to the image results database,
tests/results/imagerepo.json. The description box of this pull request should contain a reference
to the matching one in test-iris-imagehash.

Note: The result_image_comparison folder is covered by a project .gitignore setting, so those files will
not show up in a git status check.

Important: The Iris pull-request will not test successfully in Cirrus-CI until the test-iris-imagehash pull re-
quest has been merged. This is because there is an Iris test which ensures the existence of the reference images (uris) for
all the targets in the image results database. It will also fail if you forgot to run recreate_v4_files_listing.
py to update the image-listing file in test-iris-imagehash.

24.5. Testing 213

https://github.com/SciTools/test-iris-imagehash
https://github.com/SciTools/test-iris-imagehash
https://github.com/SciTools/test-iris-imagehash
https://github.com/SciTools/iris
https://github.com/SciTools/iris

Iris, Release 3.0.1

24.5.3 Running the Tests

Using setuptools for Testing Iris

Warning: The setuptools test command was deprecated in v41.5.0. See Using Nox for Testing Iris.

A prerequisite of running the tests is to have the Python environment setup. For more information on this see Installing
From Source (Developers).

Many Iris tests will use data that may be defined in the test itself, however this is not always the case as sometimes
example files may be used. Due to the size of some of the files used these are not kept in the Iris repository. A separate
repository under the SciTools organisation is used, see https://github.com/SciTools/iris-test-data.

In order to run the tests with all the test data you must clone the iris-test-data repository and then con-
figure your shell to ensure the Iris tests can find it by using the shell environment variable named OVER-
RIDE_TEST_DATA_REPOSITORY. The example command below uses ~/projects as the parent directory:

cd ~/projects
git clone git@github.com:SciTools/iris-test-data.git
export OVERRIDE_TEST_DATA_REPOSITORY=~/projects/iris-test-data/test_data

All the Iris tests may be run from the root iris project directory via:

python setup.py test

You can also run a specific test, the example below runs the tests for mapping:

cd lib/iris/tests
python test_mapping.py

When running the test directly as above you can view the command line options using the commands python
test_mapping.py -h or python test_mapping.py --help.

Tip: A useful command line option to use is -d. This will display matplotlib figures as the tests are run. For example:

python test_mapping.py -d

You can also use the -d command line option when running all the tests but this will take a while to run and will
require the manual closing of each of the figures for the tests to continue.

The output from running the tests is verbose as it will run ~5000 separate tests. Below is a trimmed example of the
output:

running test
Running test suite(s): default

Running test discovery on iris.tests with 2 processors.
test_circular_subset (iris.tests.experimental.regrid.test_regrid_area_weighted_
→˓rectilinear_src_and_grid.TestAreaWeightedRegrid) ... ok
test_cross_section (iris.tests.experimental.regrid.test_regrid_area_weighted_
→˓rectilinear_src_and_grid.TestAreaWeightedRegrid) ... ok
test_different_cs (iris.tests.experimental.regrid.test_regrid_area_weighted_
→˓rectilinear_src_and_grid.TestAreaWeightedRegrid) ... ok
...

(continues on next page)

214 Chapter 24. Contributing to the Code Base

https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/history.html#v41-5-0
https://github.com/SciTools
https://github.com/SciTools/iris-test-data
https://matplotlib.org/

Iris, Release 3.0.1

(continued from previous page)

...
test_ellipsoid (iris.tests.unit.experimental.raster.test_export_geotiff.
→˓TestProjection) ... SKIP: Test requires 'gdal'.
test_no_ellipsoid (iris.tests.unit.experimental.raster.test_export_geotiff.
→˓TestProjection) ... SKIP: Test requires 'gdal'.
...
...
test_slice (iris.tests.test_util.TestAsCompatibleShape) ... ok
test_slice_and_transpose (iris.tests.test_util.TestAsCompatibleShape) ... ok
test_transpose (iris.tests.test_util.TestAsCompatibleShape) ... ok

--
Ran 4762 tests in 238.649s

OK (SKIP=22)

There may be some tests that have been skipped. This is due to a Python decorator being present in the test script that
will intentionally skip a test if a certain condition is not met. In the example output above there are 22 skipped tests,
at the point in time when this was run this was primarily due to an experimental dependency not being present.

Tip: The most common reason for tests to be skipped is when the directory for the iris-test-data has not been
set which would shows output such as:

test_coord_coord_map (iris.tests.test_plot.Test1dScatter) ... SKIP: Test(s) require
→˓external data.
test_coord_coord (iris.tests.test_plot.Test1dScatter) ... SKIP: Test(s) require
→˓external data.
test_coord_cube (iris.tests.test_plot.Test1dScatter) ... SKIP: Test(s) require
→˓external data.

All Python decorators that skip tests will be defined in lib/iris/tests/__init__.py with a function name
with a prefix of skip_.

Using Nox for Testing Iris

Iris has adopted the use of the nox tool for automated testing on cirrus-ci and also locally on the command-line for
developers.

nox is similar to tox, but instead leverages the expressiveness and power of a Python configuration file rather than an
.ini style file. As with tox, nox can use virtualenv to create isolated Python environments, but in addition also supports
conda as a testing environment backend.

Where is Nox Used?

Iris uses nox as a convenience to fully automate the process of executing the Iris tests, but also automates the process
of:

• building the documentation and executing the doc-tests

• building the documentation gallery

• running the documentation URL link check

• linting the code-base

24.5. Testing 215

https://nox.thea.codes/en/latest/
https://cirrus-ci.com/github/SciTools/iris
https://nox.thea.codes/en/latest/
https://tox.readthedocs.io/en/latest/
https://tox.readthedocs.io/en/latest/
https://nox.thea.codes/en/latest/
https://virtualenv.pypa.io/en/latest/
https://docs.conda.io/en/latest/
https://nox.thea.codes/en/latest/

Iris, Release 3.0.1

• ensuring the code-base style conforms to the black standard

You can perform all of these tasks manually yourself, however the onus is on you to first ensure that all of the required
package dependencies are installed and available in the testing environment.

Nox has been configured to automatically do this for you, and provides a means to easily replicate the remote testing
behaviour of cirrus-ci locally for the developer.

Installing Nox

We recommend installing nox using conda. To install nox in a separate conda environment:

conda create -n nox -c conda-forge nox
conda activate nox

To install nox in an existing active conda environment:

conda install -c conda-forge nox

The nox package is also available on PyPI, however nox has been configured to use the conda backend for Iris, so an
installation of conda must always be available.

Testing with Nox

The nox configuration file noxfile.py is available in the root iris project directory, and defines all the nox sessions
(i.e., tasks) that may be performed. nox must always be executed from the iris root directory.

To list the configured nox sessions for Iris:

nox --list

To run the Iris tests for all configured versions of Python:

nox --session tests

To build the Iris documentation specifically for Python 3.7:

nox --session doctest-3.7

To run all the Iris nox sessions:

nox

For further nox command-line options:

nox --help

Note: nox will cache its testing environments in the .nox root iris project directory.

216 Chapter 24. Contributing to the Code Base

https://black.readthedocs.io/en/stable/
https://nox.thea.codes/en/latest/
https://cirrus-ci.com/github/SciTools/iris
https://nox.thea.codes/en/latest/
https://docs.conda.io/en/latest/
https://nox.thea.codes/en/latest/
https://docs.conda.io/en/latest/
https://nox.thea.codes/en/latest/
https://docs.conda.io/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/
https://nox.thea.codes/en/latest/

Iris, Release 3.0.1

24.5.4 Continuous Integration (CI) Testing

The Iris GitHub repository is configured to run checks on the code automatically when a pull request is created,
updated or merged against Iris master. The checks performed are:

• SciTools CLA Checker

• Cirrus-CI

SciTools CLA Checker

A bot that checks the user who created the pull request has signed the Contributor’s License Agreement (CLA). For
more information on this this please see https://scitools.org.uk/organisation.html#governance

Cirrus-CI

The unit and integration tests in Iris are an essential mechanism to ensure that the Iris code base is working as expected.
Running the Tests may be run manually but to ensure the checks are performed a continuous integration testing tool
named cirrus-ci is used.

A cirrus-ci configuration file named .cirrus.yml is in the Iris repository which tells Cirrus-CI what commands to run.
The commands include retrieving the Iris code base and associated test files using conda and then running the tests.
cirrus-ci allows for a matrix of tests to be performed to ensure that all expected variations test successfully.

The cirrus-ci tests are run automatically against the Iris master repository when a pull request is submitted, updated or
merged.

GitHub Checklist

An example snapshot from a successful GitHub pull request shows all tests passing:

24.5. Testing 217

https://github.com/SciTools/iris
https://scitools.org.uk/organisation.html#governance
https://cirrus-ci.com/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://github.com/SciTools/iris/blob/master/.cirrus.yml
https://cirrus-ci.com/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://github.com/SciTools/iris

Iris, Release 3.0.1

If any CI checks fail, then the pull request is unlikely to be merged to the Iris target branch by a core developer.

218 Chapter 24. Contributing to the Code Base

CHAPTER

TWENTYFIVE

CONTRIBUTING YOUR CHANGES

25.1 Contributing a “What’s New” Entry

Iris uses a file named latest.rst to keep a draft of upcoming changes that will form the next release. Contributions
to the What’s New in Iris document are written by the developer most familiar with the change made. The contribution
should be included as part of the Iris Pull Request that introduces the change.

The latest.rst and the past release notes are kept in docs/iris/src/whatsnew/. If you are writing the
first contribution after an Iris release: create the new latest.rst by copying the content from latest.rst.
template in the same directory.

Since the Contribution categories include Internal changes, all Iris Pull Requests should be accompanied by a “What’s
New” contribution.

25.1.1 Git Conflicts

If changes to latest.rst are being suggested in several simultaneous Iris Pull Requests, Git will likely encounter
merge conflicts. If this situation is thought likely (large PR, high repo activity etc.):

• PR author: Do not include a “What’s New” entry. Mention in the PR text that a “What’s New” entry is pending

• PR reviewer: Review the PR as normal. Once the PR is acceptable, ask that a new pull request be created
specifically for the “What’s New” entry, which references the main pull request and titled (e.g. for PR#9999):

What’s New for #9999

• PR author: create the “What’s New” pull request

• PR reviewer: once the “What’s New” PR is created, merge the main PR. (this will fix any cirrus-ci linkcheck
errors where the links in the “What’s New” PR reference new features introduced in the main PR)

• PR reviewer: review the “What’s New” PR, merge once acceptable

These measures should mean the suggested latest.rst changes are outstanding for the minimum time, minimising
conflicts and minimising the need to rebase or merge from trunk.

219

https://cirrus-ci.com/github/SciTools/iris

Iris, Release 3.0.1

25.1.2 Writing a Contribution

As introduced above, a contribution is the description of a change to Iris which improved Iris in some way. As such,
a single Iris Pull Request may contain multiple changes that are worth highlighting as contributions to the what’s new
document.

The appropriate contribution for a pull request might in fact be an addition or change to an existing “What’s New”
entry.

Each contribution will ideally be written as a single concise bullet point in a reStructuredText format. Where possible
do not exceed column 80 and ensure that any subsequent lines of the same bullet point are aligned with the first. The
content should target an Iris user as the audience. The required content, in order, is as follows:

• Names of those who contributed the change. These should be their GitHub user name. Link the name to
their GitHub profile. E.g. `@bjlittle <https://github.com/bjlittle>`_ and `@tkknight
<https://github.com/tkknight>`_ changed...

• The new/changed behaviour

• Context to the change. Possible examples include: what this fixes, why something was added, issue references
(e.g. :issue:`9999`), more specific detail on the change itself.

• Pull request references, bracketed, following the final period. E.g. (:pull:`1111`, :pull:`9999`)

• A trailing blank line (standard reStructuredText bullet format)

For example:

* `@bjlittle <https://github.com/bjlittle>`_ and
`@tkknight <https://github.com/tkknight>`_ changed changed argument ``x``
to be optional in :class:`~iris.module.class` and
:meth:`iris.module.method`. This allows greater flexibility as requested in
:issue:`9999`. (:pull:`1111`, :pull:`9999`)

The above example also demonstrates some of the possible syntax for including links to code. For more inspiration on
possible content and references, please examine past what’s What’s New in Iris entries.

Note: The reStructuredText syntax will be checked as part of building the documentation. Any warnings should be
corrected. cirrus-ci will automatically build the documentation when creating a pull request, however you can also
manually build the documentation.

25.1.3 Contribution Categories

The structure of the what’s new release note should be easy to read by users. To achieve this several categories may
be used.

Announcements General news and announcements to the Iris community.

Features Features that are new or changed to add functionality.

Bug Fixes A bug fix.

Incompatible Changes A change that causes an incompatibility with prior versions of Iris.

Deprecations Deprecations of functionality.

Dependencies Additions, removals and version changes in Iris’ package dependencies.

Documentation Changes to documentation.

220 Chapter 25. Contributing Your Changes

https://cirrus-ci.com/github/SciTools/iris

Iris, Release 3.0.1

Internal Changes to any internal or development related topics, such as testing, environment dependencies etc.

25.2 Pull Request Checklist

All pull request will be reviewed by a core developer who will manage the process of merging. It is the responsibility
of a developer submitting a pull request to do their best to deliver a pull request which meets the requirements of the
project it is submitted to.

The check list summarises criteria which will be checked before a pull request is merged. Before submitting a pull
request please consider this list.

1. Provide a helpful description of the Pull Request. This should include:

• The aim of the change / the problem addressed / a link to the issue.

• How the change has been delivered.

1. Include a “What’s New” entry, if appropriate. See Contributing a “What’s New” Entry.

2. Check all tests pass. This includes existing tests and any new tests added for any new functionality. For more
information see Running the Tests.

3. Check all modified and new source files conform to the required Code Formatting.

4. Check the source documentation been updated to explain all new or changed features. See Docstrings.

5. Include code examples inside the docstrings where appropriate. See Testing.

6. Check the documentation builds without warnings or errors. See Building

7. Check for any new dependencies in the .cirrus.yml config file.

8. Check for any new dependencies in the readthedocs.yml file. This file is used to build the documentation that
is served from https://scitools-iris.readthedocs.io/en/latest/

9. Check for updates needed for supporting projects for test or example data. For example:

• iris-test-data is a github project containing all the data to support the tests.

• iris-sample-data is a github project containing all the data to support the gallery and examples.

• test-iris-imagehash is a github project containing reference plot images to support Iris Graphics Tests.

If new files are required by tests or code examples, they must be added to the appropriate supporting project via
a suitable pull-request. This pull request should be referenced in the main Iris pull request and must be accepted
and merged before the Iris one can be.

25.2. Pull Request Checklist 221

https://github.com/SciTools/iris/blob/master/.cirrus.yml
https://github.com/SciTools/iris/blob/master/requirements/ci/readthedocs.yml
https://scitools-iris.readthedocs.io/en/latest/
https://github.com/SciTools/iris-test-data
https://github.com/SciTools/iris-sample-data
https://github.com/SciTools/test-iris-imagehash

Iris, Release 3.0.1

222 Chapter 25. Contributing Your Changes

CHAPTER

TWENTYSIX

RELEASES

A release of Iris is a tag on the SciTools/Iris Github repository.

The summary below is of the main areas that constitute the release. The final section details the Maintainer Steps to
take.

26.1 Before Release

26.1.1 Deprecations

Ensure that any behaviour which has been deprecated for the correct number of previous releases is now finally
changed. More detail, including the correct number of releases, is in Deprecations.

26.2 Release Branch

Once the features intended for the release are on master, a release branch should be created, in the SciTools/Iris
repository. This will have the name:

v{major release number}.{minor release number}.x

for example:

v1.9.x

This branch shall be used to finalise the release details in preparation for the release candidate.

26.3 Release Candidate

Prior to a release, a release candidate tag may be created, marked as a pre-release in github, with a tag ending with rc
followed by a number, e.g.:

v1.9.0rc1

If created, the pre-release shall be available for a minimum of two weeks prior to the release being cut. However a 4
week period should be the goal to allow user groups to be notified of the existence of the pre-release and encouraged
to test the functionality.

A pre-release is expected for a major or minor release, but not for a point release.

If new features are required for a release after a release candidate has been cut, a new pre-release shall be issued first.

223

https://github.com/SciTools/iris/releases

Iris, Release 3.0.1

26.4 Documentation

The documentation should include all of the what’s new entries for the release. This content should be reviewed and
adapted as required.

Steps to achieve this can be found in the Maintainer Steps.

26.5 The Release

The final steps are to change the version string in the source of Iris.__init__.py and include the release date in
the relevant what’s new page within the documentation.

Once all checks are complete, the release is cut by the creation of a new tag in the SciTools Iris repository.

26.6 Conda Recipe

Once a release is cut, the Iris feedstock for the conda recipe must be updated to build the latest release of Iris and push
this artefact to conda forge.

26.7 Merge Back

After the release is cut, the changes shall be merged back onto the Scitools/iris master branch.

To achieve this, first cut a local branch from the release branch, {release}.x. Next add a commit changing the
release string to match the release string on scitools/master. This branch can now be proposed as a pull request to
master. This work flow ensures that the commit identifiers are consistent between the .x branch and master.

26.8 Point Releases

Bug fixes may be implemented and targeted as the .x branch. These should lead to a new point release, another tag.
For example, a fix for a problem with 1.9.0 will be merged into 1.9.x, and then released by tagging 1.9.1.

New features shall not be included in a point release, these are for bug fixes.

A point release does not require a release candidate, but the rest of the release process is to be followed, including the
merge back of changes into master.

26.9 Maintainer Steps

These steps assume a release for v1.9 is to be created

224 Chapter 26. Releases

https://github.com/conda-forge/iris-feedstock/tree/master/recipe
https://anaconda.org/conda-forge/iris

Iris, Release 3.0.1

26.9.1 Release Steps

1. Create the branch 1.9.x on the main repo, not in a forked repo, for the release candidate or release. The only
exception is for a point/bugfix release as it should already exist

2. Update the what’s new for the release:

• Copy docs/iris/src/whatsnew/latest.rst to a file named v1.9.rst

• Delete the docs/iris/src/whatsnew/latest.rst file so it will not cause an issue in the build

• In v1.9.rst update the page title (first line of the file) to show the date and version in the format of
v1.9 (DD MMM YYYY). For example v1.9 (03 Aug 2020)

• Review the file for correctness

• Work with the development team to create a ‘highlights’ section at the top of the file, providing extra detail
on notable changes

• Add v1.9.rst to git and commit all changes, including removal of latest.rst

3. Update the what’s new index docs/iris/src/whatsnew/index.rst

• Temporarily remove reference to latest.rst

• Add a reference to v1.9.rst to the top of the list

4. Update the Iris.__init__.py version string, to 1.9.0

5. Check your changes by building the documentation and viewing the changes

6. Once all the above steps are complete, the release is cut, using the Draft a new release button on the Iris release
page

26.9.2 Post Release Steps

1. Check the documentation has built on Read The Docs. The build is triggered by any commit to master. Addi-
tionally check that the versions available in the pop out menu in the bottom left corner include the new release
version. If it is not present you will need to configure the versions available in the admin dashboard in Read
The Docs

2. Copy docs/iris/src/whatsnew/latest.rst.template to docs/iris/src/whatsnew/
latest.rst. This will reset the file with the unreleased heading and placeholders for the what’s new
headings

3. Add back in the reference to latest.rst to the what’s new index docs/iris/src/whatsnew/index.
rst

4. Update Iris.__init__.py version string to show as 1.10.dev0

5. Merge back to master

26.9. Maintainer Steps 225

https://github.com/SciTools/iris/releases
https://github.com/SciTools/iris/releases
https://readthedocs.org/projects/scitools-iris/builds/

Iris, Release 3.0.1

226 Chapter 26. Releases

CHAPTER

TWENTYSEVEN

IRIS API

27.1 iris.analysis

27.1.1 iris.analysis.calculus

Calculus operations on iris.cube.Cube instances.

See also: NumPy.

In this module:

• cube_delta

• differentiate

• curl

iris.analysis.calculus.cube_delta(cube, coord)
Given a cube calculate the difference between each value in the given coord’s direction.

Args:
• coord either a Coord instance or the unique name of a coordinate in the cube. If a

Coord instance is provided, it does not necessarily have to exist in the cube.
Example usage:

change_in_temperature_wrt_pressure = cube_delta(temperature_cube,
→˓'pressure')

Note: Missing data support not yet implemented.

iris.analysis.calculus.differentiate(cube, coord_to_differentiate)
Calculate the differential of a given cube with respect to the coord_to_differentiate.

Args:
• coord_to_differentiate: Either a Coord instance or the unique name of a coordinate

which exists in the cube. If a Coord instance is provided, it does not necessarily
have to exist on the cube.

Example usage:

u_wind_acceleration = differentiate(u_wind_cube, 'forecast_time')

227

https://numpy.org/doc/stable/reference/index.html#module-numpy

Iris, Release 3.0.1

The algorithm used is equivalent to:

𝑑𝑖 =
𝑣𝑖+1 − 𝑣𝑖
𝑐𝑖+1 − 𝑐𝑖

Where d is the differential, v is the data value, c is the coordinate value and i is the
index in the differential direction. Hence, in a normal situation if a cube has a shape (x:
n; y: m) differentiating with respect to x will result in a cube of shape (x: n-1; y: m)
and differentiating with respect to y will result in (x: n; y: m-1). If the coordinate to
differentiate is circular then the resultant shape will be the same as the input cube.

In the returned cube the coord_to_differentiate object is redefined such that the output
coordinate values are set to the averages of the original coordinate values (i.e. the mid-
points). Similarly, the output lower bounds values are set to the averages of the original
lower bounds values and the output upper bounds values are set to the averages of the
original upper bounds values. In more formal terms:

• C[i] = (c[i] + c[i+1]) / 2
• B[i, 0] = (b[i, 0] + b[i+1, 0]) / 2
• B[i, 1] = (b[i, 1] + b[i+1, 1]) / 2

where c and b represent the input coordinate values and bounds, and C and B the output
coordinate values and bounds.

Note: Difference method used is the same as cube_delta() and therefore has the
same limitations.

Note: Spherical differentiation does not occur in this routine.

iris.analysis.calculus.curl(i_cube, j_cube, k_cube=None)
Calculate the 2-dimensional or 3-dimensional spherical or cartesian curl of the given vec-
tor of cubes.

As well as the standard x and y coordinates, this function requires each cube to possess a
vertical or z-like coordinate (representing some form of height or pressure). This can be a
scalar or dimension coordinate.

Args:
• i_cube The i cube of the vector to operate on
• j_cube The j cube of the vector to operate on

Kwargs:
• k_cube The k cube of the vector to operate on

Return (i_cmpt_curl_cube, j_cmpt_curl_cube, k_cmpt_curl_cube)

If the k-cube is not passed in then the 2-dimensional curl will be calculated, yielding the
result: [None, None, k_cube]. If the k-cube is passed in, the 3-dimensional curl will be
calculated, returning 3 component cubes.

All cubes passed in must have the same data units, and those units must be spatially-
derived (e.g. ‘m/s’ or ‘km/h’).

The calculation of curl is dependent on the type of CoordSystem() in the cube. If
the CoordSystem() is either GeogCS or RotatedGeogCS, the spherical curl will be
calculated; otherwise the cartesian curl will be calculated:

Cartesian curl

228 Chapter 27. Iris API

Iris, Release 3.0.1

When cartesian calculus is used, i_cube is the u component, j_cube is the v
component and k_cube is the w component.

The Cartesian curl is defined as:

∇× 𝑢⃗ = (
𝛿𝑤

𝛿𝑦
− 𝛿𝑣

𝛿𝑧
)⃗𝑎𝑖 − (

𝛿𝑤

𝛿𝑥
− 𝛿𝑢

𝛿𝑧
)⃗𝑎𝑗 + (

𝛿𝑣

𝛿𝑥
− 𝛿𝑢

𝛿𝑦
)⃗𝑎𝑘

Spherical curl
When spherical calculus is used, i_cube is the 𝜑 vector component (e.g.
eastward), j_cube is the 𝜃 component (e.g. northward) and k_cube is the
radial component.

The spherical curl is defined as:

∇× 𝐴⃗ =
1

𝑟𝑐𝑜𝑠𝜃
(
𝛿

𝛿𝜃
(𝐴⃗𝜑𝑐𝑜𝑠𝜃)−

𝛿𝐴⃗𝜃

𝛿𝜑
)𝑟⃗ +

1

𝑟
(

1

𝑐𝑜𝑠𝜃

𝛿𝐴⃗𝑟

𝛿𝜑
− 𝛿

𝛿𝑟
(𝑟𝐴⃗𝜑))𝜃 +

1

𝑟
(
𝛿

𝛿𝑟
(𝑟𝐴⃗𝜃)−

𝛿𝐴⃗𝑟

𝛿𝜃
)𝜑⃗

where phi is longitude, theta is latitude.

27.1.2 iris.analysis.cartography

Various utilities and numeric transformations relevant to cartography.

In this module:

• area_weights

• cosine_latitude_weights

• get_xy_contiguous_bounded_grids

• get_xy_grids

• gridcell_angles

• project

• rotate_grid_vectors

• rotate_pole

• rotate_winds

• unrotate_pole

• wrap_lons

• DistanceDifferential

• PartialDifferential

iris.analysis.cartography.area_weights(cube, normalize=False)
Returns an array of area weights, with the same dimensions as the cube.

This is a 2D lat/lon area weights array, repeated over the non lat/lon dimensions.

Args:
• cube (iris.cube.Cube): The cube to calculate area weights for.

Kwargs:
• normalize (False/True): If False, weights are grid cell areas. If True, weights are

grid cell areas divided by the total grid area.
The cube must have coordinates ‘latitude’ and ‘longitude’ with bounds.

Area weights are calculated for each lat/lon cell as:

27.1. iris.analysis 229

Iris, Release 3.0.1

𝑟2(𝑙𝑜𝑛1 − 𝑙𝑜𝑛0)(sin(𝑙𝑎𝑡1)− sin(𝑙𝑎𝑡0))

Currently, only supports a spherical datum. Uses earth ra-
dius from the cube, if present and spherical. Defaults to
iris.analysis.cartography.DEFAULT_SPHERICAL_EARTH_RADIUS.

iris.analysis.cartography.cosine_latitude_weights(cube)
Returns an array of latitude weights, with the same dimensions as the cube. The weights
are the cosine of latitude.

These are n-dimensional latitude weights repeated over the dimensions not covered by the
latitude coordinate.

The cube must have a coordinate with ‘latitude’ in the name. Out of range values (greater
than 90 degrees or less than -90 degrees) will be clipped to the valid range.

Weights are calculated for each latitude as:

𝑤𝑙 = cos𝜑𝑙

Examples:

Compute weights suitable for averaging type operations:

from iris.analysis.cartography import cosine_latitude_weights
cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
weights = cosine_latitude_weights(cube)

Compute weights suitable for EOF analysis (or other covariance type analyses):

import numpy as np
from iris.analysis.cartography import cosine_latitude_weights
cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
weights = np.sqrt(cosine_latitude_weights(cube))

iris.analysis.cartography.get_xy_contiguous_bounded_grids(cube)
Return 2d arrays for x and y bounds.

Returns array of shape (n+1, m+1).

Example:

xs, ys = get_xy_contiguous_bounded_grids(cube)

iris.analysis.cartography.get_xy_grids(cube)
Return 2D X and Y points for a given cube.

Parameters cube - The cube for which to generate 2D X
and Y points. (*) –

Example:

230 Chapter 27. Iris API

Iris, Release 3.0.1

x, y = get_xy_grids(cube)

iris.analysis.cartography.gridcell_angles(x, y=None,
cell_angle_boundpoints='mid-
lhs, mid-rhs')

Calculate gridcell orientations for an arbitrary 2-dimensional grid.

The input grid is defined by two 2-dimensional coordinate arrays with the same dimen-
sions (ny, nx), specifying the geolocations of a 2D mesh.

Input values may be coordinate points (ny, nx) or bounds (ny, nx, 4). However, if points,
the edges in the X direction are assumed to be connected by wraparound.

Input can be either two arrays, two coordinates, or a single cube containing two suitable
coordinates identified with the ‘x’ and ‘y’ axes.

Args:

The inputs (x [,y]) can be any of the following :
• x (Cube): a grid cube with 2D X and Y coordinates, identified by ‘axis’. The coor-

dinates must be 2-dimensional with the same shape. The two dimensions represent
grid dimensions in the order Y, then X.

• x, y (Coord): X and Y coordinates, specifying grid locations on the globe. The coor-
dinates must be 2-dimensional with the same shape. The two dimensions represent
grid dimensions in the order Y, then X. If there is no coordinate system, they are
assumed to be true longitudes and latitudes. Units must convertible to ‘degrees’.

• x, y (2-dimensional arrays of same shape (ny, nx)): longitude and latitude cell
center locations, in degrees. The two dimensions represent grid dimensions in the
order Y, then X.

• x, y (3-dimensional arrays of same shape (ny, nx, 4)): longitude and latitude cell
bounds, in degrees. The first two dimensions are grid dimensions in the order Y,
then X. The last index maps cell corners anticlockwise from bottom-left.

Optional Args:
• cell_angle_boundpoints (string): Controls which gridcell bounds locations are used

to calculate angles, if the inputs are bounds or bounded coordinates. Valid values
are ‘lower-left, lower-right’, which takes the angle from the lower left to the lower
right corner, and ‘mid-lhs, mid-rhs’ which takes an angles between the average of
the left-hand and right-hand pairs of corners. The default is ‘mid-lhs, mid-rhs’.

Returns

(2-dimensional cube)
Cube of angles of grid-x vector from true Eastward direction for each
gridcell, in degrees. It also has “true” longitude and latitude coordinates,
with no coordinate system. When the input has coords, then the output
ones are identical if the inputs are true-latlons, otherwise they are trans-
formed true-latlon versions. When the input has bounded coords, then
the output coords have matching bounds and centrepoints (possibly trans-
formed). When the input is 2d arrays, or has unbounded coords, then the
output coords have matching points and no bounds. When the input is 3d
arrays, then the output coords have matching bounds, and the centrepoints
are an average of the 4 boundpoints.

Return type angles

27.1. iris.analysis 231

Iris, Release 3.0.1

iris.analysis.cartography.project(cube, target_proj, nx=None,
ny=None)

Nearest neighbour regrid to a specified target projection.

Return a new cube that is the result of projecting a cube with 1 or 2 dimensional latitude-
longitude coordinates from its coordinate system into a specified projection e.g. Robinson
or Polar Stereographic. This function is intended to be used in cases where the cube’s
coordinates prevent one from directly visualising the data, e.g. when the longitude and
latitude are two dimensional and do not make up a regular grid.

Parameters
• cube (*) – An instance of iris.cube.Cube.
• target_proj (*) – An instance of the Cartopy Projection class, or an

instance of iris.coord_systems.CoordSystem from which a pro-
jection will be obtained.

Kwargs:
• nx Desired number of sample points in the x direction for a domain covering the

globe.
• ny Desired number of sample points in the y direction for a domain covering the

globe.

Returns An instance of iris.cube.Cube and a list describing the extent of
the projection.

Note: This function assumes global data and will if necessary extrapolate beyond the
geographical extent of the source cube using a nearest neighbour approach. nx and ny
then include those points which are outside of the target projection.

Note: Masked arrays are handled by passing their masked status to the resulting nearest
neighbour values. If masked, the value in the resulting cube is set to 0.

Warning: This function uses a nearest neighbour approach rather than any form of
linear/non-linear interpolation to determine the data value of each cell in the resulting
cube. Consequently it may have an adverse effect on the statistics of the data e.g. the
mean and standard deviation will not be preserved.

Warning: If the target projection is non-rectangular, e.g. Robinson, the target grid
may include points outside the boundary of the projection. The latitude/longitude of
such points may be unpredictable.

iris.analysis.cartography.rotate_grid_vectors(u_cube, v_cube,
grid_angles_cube=None,
grid_angles_kwargs=None)

Rotate distance vectors from grid-oriented to true-latlon-oriented.

Can also rotate by arbitrary angles, if they are passed in.

Note: This operation overlaps somewhat in function with iris.analysis.
cartography.rotate_winds(). However, that routine only rotates vectors ac-

232 Chapter 27. Iris API

Iris, Release 3.0.1

cording to transformations between coordinate systems. This function, by contrast, can
rotate vectors by arbitrary angles. Most commonly, the angles are estimated solely from
grid sampling points, using gridcell_angles() : This allows operation on complex
meshes defined by two-dimensional coordinates, such as most ocean grids.

Args:
• u_cube, v_cube [(cube)] Cubes of grid-u and grid-v vector components. Units

should be differentials of true-distance, e.g. ‘m/s’.
Optional args:

• grid_angles_cube [(cube)] gridcell orientation angles. Units must be angular, i.e.
can be converted to ‘radians’. If not provided, grid angles are estimated from
‘u_cube’ using the gridcell_angles() method.

• grid_angles_kwargs [(dict or None)] Additional keyword args to be passed to the
gridcell_angles() method, if it is used.

Returns
(cube) Cubes of true-north oriented vector components. Units are same as

inputs.

Note: Vector magnitudes will always be the same as the inputs.

Return type true_u, true_v

iris.analysis.cartography.rotate_pole(lons, lats, pole_lon, pole_lat)
Convert arrays of longitudes and latitudes to arrays of rotated-pole longitudes and lati-
tudes. The values of pole_lon and pole_lat should describe the rotated pole that the
arrays of longitudes and latitudes are to be rotated onto.

As the arrays of longitudes and latitudes must describe a rectilinear grid, the arrays of
rotated-pole longitudes and latitudes must be of the same shape as each other.

Example:

rotated_lons, rotated_lats = rotate_pole(lons, lats, pole_
→˓lon, pole_lat)

Note: Uses proj.4 to perform the conversion.

Parameters
• lons (*) – An array of longitude values.
• lats (*) – An array of latitude values.
• pole_lon (*) – The longitude of the rotated pole that the arrays of longi-

tudes and latitudes are to be rotated onto.
• pole_lat (*) – The latitude of the rotated pole that the arrays of longi-

tudes and latitudes are to be rotated onto.
Returns An array of rotated-pole longitudes and an array of rotated-pole lati-

tudes.

iris.analysis.cartography.rotate_winds(u_cube, v_cube, target_cs)
Transform wind vectors to a different coordinate system.

The input cubes contain U and V components parallel to the local X and Y directions of
the input grid at each point.

27.1. iris.analysis 233

Iris, Release 3.0.1

The output cubes contain the same winds, at the same locations, but relative to the grid
directions of a different coordinate system. Thus in vector terms, the magnitudes will
always be the same, but the angles can be different.

The outputs retain the original horizontal dimension coordinates, but also have two 2-
dimensional auxiliary coordinates containing the X and Y locations in the target coordi-
nate system.

Args:
• u_cube An instance of iris.cube.Cube that contains the x-component of the

vector.
• v_cube An instance of iris.cube.Cube that contains the y-component of the

vector.
• target_cs An instance of iris.coord_systems.CoordSystem that specifies

the new grid directions.

Returns A (u’, v’) tuple of iris.cube.Cube instances that are the u and v
components in the requested target coordinate system. The units are the same
as the inputs.

Note: The U and V values relate to distance, with units such as ‘m s-1’. These are not
the same as coordinate vectors, which transform in a different manner.

Note: The names of the output cubes are those of the inputs, prefixed with ‘transformed_’
(e.g. ‘transformed_x_wind’).

Warning: Conversion between rotated-pole and non-rotated systems can be ex-
pressed analytically. However, this function always uses a numerical approach. In
locations where this numerical approach does not preserve magnitude to an accuracy
of 0.1%, the corresponding elements of the returned cubes will be masked.

iris.analysis.cartography.unrotate_pole(rotated_lons, rotated_lats,
pole_lon, pole_lat)

Convert arrays of rotated-pole longitudes and latitudes to unrotated arrays of longitudes
and latitudes. The values of pole_lon and pole_lat should describe the location of
the rotated pole that describes the arrays of rotated-pole longitudes and latitudes.

As the arrays of rotated-pole longitudes and latitudes must describe a rectilinear grid, the
arrays of rotated-pole longitudes and latitudes must be of the same shape as each other.

Example:

lons, lats = unrotate_pole(rotated_lons, rotated_lats,
→˓pole_lon, pole_lat)

Note: Uses proj.4 to perform the conversion.

Parameters
• rotated_lons (*) – An array of rotated-pole longitude values.
• rotated_lats (*) – An array of rotated-pole latitude values.

234 Chapter 27. Iris API

Iris, Release 3.0.1

• pole_lon (*) – The longitude of the rotated pole that describes the arrays
of rotated-pole longitudes and latitudes.

• pole_lat (*) – The latitude of the rotated pole that describes the arrays
of rotated-pole longitudes and latitudes.

Returns An array of unrotated longitudes and an array of unrotated latitudes.

iris.analysis.cartography.wrap_lons(lons, base, period)
Wrap longitude values into the range between base and base+period.
For example:

>>> print(wrap_lons(np.array([185, 30, -200, 75]), -180, 360))
[-175. 30. 160. 75.]

DistanceDifferential(dx1, dy1, dx2, dy2)

class iris.analysis.cartography.DistanceDifferential(_cls,
dx1,
dy1,
dx2,
dy2)

Create new instance of DistanceDifferential(dx1, dy1, dx2, dy2)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property dx1
Alias for field number 0

property dx2
Alias for field number 2

property dy1
Alias for field number 1

property dy2
Alias for field number 3

PartialDifferential(dx1, dy1)

class iris.analysis.cartography.PartialDifferential(_cls,
dx1,
dy1)

Create new instance of PartialDifferential(dx1, dy1)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

27.1. iris.analysis 235

Iris, Release 3.0.1

property dx1
Alias for field number 0

property dy1
Alias for field number 1

27.1.3 iris.analysis.geometry

Various utilities related to geometric operations.

Note: This module requires shapely.

In this module:

• geometry_area_weights

iris.analysis.geometry.geometry_area_weights(cube, geometry, nor-
malize=False)

Returns the array of weights corresponding to the area of overlap between the cells of
cube’s horizontal grid, and the given shapely geometry.

The returned array is suitable for use with iris.analysis.MEAN .

The cube must have bounded horizontal coordinates.

Note: This routine works in Euclidean space. Area calculations do not account for
the curvature of the Earth. And care must be taken to ensure any longitude values are
expressed over a suitable interval.

Note: This routine currently does not handle all out-of-bounds cases correctly. In cases
where both the coordinate bounds and the geometry’s bounds lie outside the physically
realistic range (i.e., abs(latitude) > 90., as it is commonly the case when bounds are con-
structed via guess_bounds()), the weights calculation might be wrong. In this case, a
UserWarning will be issued.

Args:
• cube (iris.cube.Cube): A Cube containing a bounded, horizontal grid defini-

tion.
• geometry (a shapely geometry instance): The geometry of interest. To produce

meaningful results this geometry must have a non-zero area. Typically a Polygon
or MultiPolygon.

Kwargs:
• normalize: Calculate each individual cell weight as the cell area overlap between the

cell and the given shapely geometry divided by the total cell area. Default is False.

236 Chapter 27. Iris API

Iris, Release 3.0.1

27.1.4 iris.analysis.maths

Basic mathematical and statistical operations.

In this module:

• abs

• add

• apply_ufunc

• divide

• exp

• exponentiate

• intersection_of_cubes

• log

• log10

• log2

• multiply

• subtract

• IFunc

iris.analysis.maths.abs(cube, in_place=False)
Calculate the absolute values of the data in the Cube provided.

Args:
• cube: An instance of iris.cube.Cube.

Kwargs:
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.add(cube, other, dim=None, in_place=False)
Calculate the sum of two cubes, or the sum of a cube and a coordinate or scalar value.

When summing two cubes, they must both have the same coordinate systems & data
resolution.

When adding a coordinate to a cube, they must both share the same number of elements
along a shared axis.

Args:
• cube: An instance of iris.cube.Cube.
• other: An instance of iris.cube.Cube or iris.coords.Coord, or a num-

ber or numpy.ndarray.
Kwargs:

• dim: If supplying a coord with no match on the cube, you must supply the dimension
to process.

• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

27.1. iris.analysis 237

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

iris.analysis.maths.apply_ufunc(ufunc, cube, other=None,
new_unit=None, new_name=None,
in_place=False)

Apply a numpy universal function to a cube or pair of cubes.

Note: Many of the numpy.ufunc have been implemented explicitly in Iris e.g.
numpy.abs(), numpy.add() are implemented in iris.analysis.maths.
abs(), iris.analysis.maths.add(). It is usually preferable to use these func-
tions rather than iris.analysis.maths.apply_ufunc() where possible.

Args:
• ufunc: An instance of numpy.ufunc() e.g. numpy.sin(), numpy.mod().
• cube: An instance of iris.cube.Cube.

Kwargs:
• other: An instance of iris.cube.Cube to be given as the second argument to

numpy.ufunc().
• new_unit: Unit for the resulting Cube.
• new_name: Name for the resulting Cube.
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

Example:

cube = apply_ufunc(numpy.sin, cube, in_place=True)

iris.analysis.maths.divide(cube, other, dim=None, in_place=False)
Calculate the division of a cube by a cube or coordinate.

Args:
• cube: An instance of iris.cube.Cube.
• other: An instance of iris.cube.Cube or iris.coords.Coord, or a num-

ber or numpy.ndarray.
Kwargs:

• dim: If supplying a coord with no match on the cube, you must supply the dimension
to process.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.exp(cube, in_place=False)
Calculate the exponential (exp(x)) of the cube.

Args:
• cube: An instance of iris.cube.Cube.

Note: Taking an exponential will return a cube with dimensionless units.

Kwargs:
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

238 Chapter 27. Iris API

http://docs.scipy.org/doc/numpy/reference/ufuncs.html
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

iris.analysis.maths.exponentiate(cube, exponent, in_place=False)
Returns the result of the given cube to the power of a scalar.

Args:
• cube: An instance of iris.cube.Cube.
• exponent: The integer or floating point exponent.

Note: When applied to the cube’s unit, the exponent must result in a unit that can
be described using only integer powers of the basic units.

e.g. Unit(‘meter^-2 kilogram second^-1’)

Kwargs:
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.intersection_of_cubes(cube, other_cube)
Return the two Cubes of intersection given two Cubes.

Note: The intersection of cubes function will ignore all single valued coordinates in
checking the intersection.

Args:
• cube: An instance of iris.cube.Cube.
• other_cube: An instance of iris.cube.Cube.

Returns A pair of iris.cube.Cube instances in a tuple corresponding to the
original cubes restricted to their intersection.

iris.analysis.maths.log(cube, in_place=False)
Calculate the natural logarithm (base-e logarithm) of the cube.

Args:
• cube: An instance of iris.cube.Cube.

Kwargs:
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.log10(cube, in_place=False)
Calculate the base-10 logarithm of the cube.

Args:
• cube: An instance of iris.cube.Cube.

Kwargs:
• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.log2(cube, in_place=False)
Calculate the base-2 logarithm of the cube.

Args:

27.1. iris.analysis 239

Iris, Release 3.0.1

• cube: An instance of iris.cube.Cube.
Kwargs:lib/iris/tests/unit/analysis/maths/test_subtract.py

• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.multiply(cube, other, dim=None, in_place=False)
Calculate the product of a cube and another cube or coordinate.

Args:
• cube: An instance of iris.cube.Cube.
• other: An instance of iris.cube.Cube or iris.coords.Coord, or a num-

ber or numpy.ndarray.
Kwargs:

• dim: If supplying a coord with no match on the cube, you must supply the dimension
to process.

Returns An instance of iris.cube.Cube.

iris.analysis.maths.subtract(cube, other, dim=None, in_place=False)
Calculate the difference between two cubes, or the difference between a cube and a coor-
dinate or scalar value.

When subtracting two cubes, they must both have the same coordinate systems & data
resolution.

When subtracting a coordinate to a cube, they must both share the same number of ele-
ments along a shared axis.

Args:
• cube: An instance of iris.cube.Cube.
• other: An instance of iris.cube.Cube or iris.coords.Coord, or a num-

ber or numpy.ndarray.
Kwargs:

• dim: If supplying a coord with no match on the cube, you must supply the dimension
to process.

• in_place: Whether to create a new Cube, or alter the given “cube”.

Returns An instance of iris.cube.Cube.

IFunc class for functions that can be applied to an iris cube.

class iris.analysis.maths.IFunc(data_func, units_func)
Create an ifunc from a data function and units function.

Args:
• data_func:

Function to be applied to one or two data arrays, which are given as posi-
tional arguments. Should return another data array, with the same shape
as the first array.

May also have keyword arguments.
• units_func:

Function to calculate the units of the resulting cube. Should take the
cube/s as input and return an instance of cf_units.Unit.

Returns An ifunc.

240 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

Example usage 1 Using an existing numpy ufunc, such as numpy.sin for the data
function and a simple lambda function for the units function:

sine_ifunc = iris.analysis.maths.IFunc(
numpy.sin, lambda cube: cf_units.Unit('1'))

sine_cube = sine_ifunc(cube)

Example usage 2 Define a function for the data arrays of two cubes and define
a units function that checks the units of the cubes for consistency, before giving
the resulting cube the same units as the first cube:

def ws_data_func(u_data, v_data):
return numpy.sqrt(u_data**2 + v_data**2)

def ws_units_func(u_cube, v_cube):
if u_cube.units != getattr(v_cube, 'units', u_cube.

→˓units):
raise ValueError("units do not match")

return u_cube.units

ws_ifunc = iris.analysis.maths.IFunc(ws_data_func, ws_
→˓units_func)
ws_cube = ws_ifunc(u_cube, v_cube, new_name='wind speed')

Example usage 3 Using a data function that allows a keyword argument:

cs_ifunc = iris.analysis.maths.IFunc(numpy.cumsum,
lambda a: a.units)

cs_cube = cs_ifunc(cube, axis=1)

__call__(cube, other=None, dim=None, in_place=False,
new_name=None, **kwargs_data_func)

Applies the ifunc to the cube(s).

Args:
• cube An instance of iris.cube.Cube, whose data is used as the first

argument to the data function.
Kwargs:
• other A cube, coord, ndarray or number whose data is used as the second

argument to the data function.
• new_name: Name for the resulting Cube.
• in_place: Whether to create a new Cube, or alter the given “cube”.
• dim: Dimension along which to apply other if it’s a coordinate that is not

found in cube
• kwargs_data_func: Keyword arguments that get passed on to the

data_func.

Returns An instance of iris.cube.Cube.

27.1. iris.analysis 241

Iris, Release 3.0.1

27.1.5 iris.analysis.stats

Statistical operations between cubes.

In this module:

• pearsonr

iris.analysis.stats.pearsonr(cube_a, cube_b, corr_coords=None,
weights=None, mdtol=1.0, com-
mon_mask=False)

Calculate the Pearson’s r correlation coefficient over specified dimensions.

Args:

• cube_a, cube_b (cubes): Cubes between which the correlation will be calculated.
The cubes should either be the same shape and have the same dimension coor-
dinates or one cube should be broadcastable to the other.

• corr_coords (str or list of str): The cube coordinate name(s) over which to calcu-
late correlations. If no names are provided then correlation will be calculated
over all common cube dimensions.

• weights (numpy.ndarray, optional): Weights array of same shape as (the smaller
of) cube_a and cube_b. Note that latitude/longitude area weights can be calcu-
lated using iris.analysis.cartography.area_weights().

• mdtol (float, optional): Tolerance of missing data. The missing data fraction is
calculated based on the number of grid cells masked in both cube_a and cube_b.
If this fraction exceed mdtol, the returned value in the corresponding cell is
masked. mdtol=0 means no missing data is tolerated while mdtol=1 means the
resulting element will be masked if and only if all contributing elements are
masked in cube_a or cube_b. Defaults to 1.

• common_mask (bool): If True, applies a common mask to cube_a and cube_b so
only cells which are unmasked in both cubes contribute to the calculation. If
False, the variance for each cube is calculated from all available cells. Defaults
to False.

Returns

A cube of the correlation between the two input cubes along the specified
dimensions, at each point in the remaining dimensions of the cubes.

For example providing two time/altitude/latitude/longitude cubes and
corr_coords of ‘latitude’ and ‘longitude’ will result in a time/altitude
cube describing the latitude/longitude (i.e. pattern) correlation at each
time/altitude point.

Reference: https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

This operation is non-lazy.

242 Chapter 27. Iris API

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Iris, Release 3.0.1

27.1.6 iris.analysis.trajectory

Defines a Trajectory class, and a routine to extract a sub-cube along a trajectory.

In this module:

• interpolate

• Trajectory

• UnstructuredNearestNeigbourRegridder

iris.analysis.trajectory.interpolate(cube, sample_points,
method=None)

Extract a sub-cube at the given n-dimensional points.

Args:

• cube The source Cube.

• sample_points A sequence of coordinate (name) - values pairs.

Kwargs:

• method Request “linear” interpolation (default) or “nearest” neighbour. Only near-
est neighbour is available when specifying multi-dimensional coordinates.

For example:

sample_points = [('latitude', [45, 45, 45]),
('longitude', [-60, -50, -40])]
interpolated_cube = interpolate(cube, sample_points)

A series of given waypoints with pre-calculated sample points.

class iris.analysis.trajectory.Trajectory(waypoints,
sam-
ple_count=10)

Defines a trajectory using a sequence of waypoints.

For example:

waypoints = [{'latitude': 45, 'longitude': -60},
{'latitude': 45, 'longitude': 0}]

Trajectory(waypoints)

Note: All the waypoint dictionaries must contain the same coordinate names.

Args:
• waypoints A sequence of dictionaries, mapping coordinate names to val-

ues.
Kwargs:

• sample_count The number of sample positions to use along the trajectory.
interpolate(cube, method=None)

Calls interpolate() to interpolate cube on the defined trajectory.

Assumes that the coordinate names supplied in the waypoints dictionaries
match to coordinate names in cube, and that points are supplied in the same

27.1. iris.analysis 243

Iris, Release 3.0.1

coord_system as in cube, where appropriate (i.e. for horizontal coordinate
points).

Args:
• cube The source Cube to interpolate.
Kwargs:
• method: The interpolation method to use; “linear” (default) or “near-

est”. Only nearest is available when specifying multi-dimensional
coordinates.

sampled_points
value}.

Type The trajectory points, as dictionaries of {coord_name

Encapsulate the operation of iris.analysis.trajectory.interpolate() with
given source and target grids.

This is the type used by the UnstructuredNearest regridding scheme.

class iris.analysis.trajectory.UnstructuredNearestNeigbourRegridder(src_cube,
tar-
get_grid_cube)

A nearest-neighbour regridder to perform regridding from the source grid to
the target grid.

This can then be applied to any source data with the same structure as the
original ‘src_cube’.

Args:
• src_cube: The Cube defining the source grid. The X and Y coordinates

can have any shape, but must be mapped over the same cube dimensions.
• target_grid_cube: A Cube, whose X and Y coordinates specify a de-

sired target grid. The X and Y coordinates must be one-dimensional
dimension coordinates, mapped to different dimensions. All other cube
components are ignored.

Returns

(object)
A callable object with the interface: result_cube = regrid-

der(data)
where data is a cube with the same grid as the original src_cube,
that is to be regridded to the target_grid_cube.

Return type regridder

Note: For latitude-longitude coordinates, the nearest-neighbour distances are
computed on the sphere, otherwise flat Euclidean distances are used.

The source and target X and Y coordinates must all have the same coordinate
system, which may also be None. If any X and Y coordinates are latitudes or
longitudes, they all must be. Otherwise, the corresponding X and Y coordi-
nates must have the same units in the source and grid cubes.

A package providing iris.cube.Cube analysis support.

This module defines a suite of Aggregator instances, which are used to specify the statistical measure
to calculate over a Cube, using methods such as aggregated_by() and collapsed().

244 Chapter 27. Iris API

Iris, Release 3.0.1

The Aggregator is a convenience class that allows specific statistical aggregation operators to be de-
fined and instantiated. These operators can then be used to collapse, or partially collapse, one or more
dimensions of a Cube, as discussed in Cube Statistics.

In particular, Collapsing Entire Data Dimensions discusses how to use MEAN to average over one di-
mension of a Cube, and also how to perform weighted Area Averaging. While Partially Reducing Data
Dimensions shows how to aggregate similar groups of data points along a single dimension, to result in
fewer points in that dimension.

The gallery contains several interesting worked examples of how an Aggregator may be used, includ-
ing:

• Global Average Annual Temperature Plot

• Applying a Filter to a Time-Series

• Hovmoller Diagram of Monthly Surface Temperature

• Seasonal Ensemble Model Plots

• Calculating a Custom Statistic

In this module:

• COUNT

• GMEAN

• HMEAN

• MAX

• MEAN

• MEDIAN

• MIN

• PEAK

• PERCENTILE

• PROPORTION

• RMS

• STD_DEV

• SUM

• VARIANCE

• WPERCENTILE

• Aggregator

• WeightedAggregator

• clear_phenomenon_identity

• Linear

• AreaWeighted

• Nearest

• UnstructuredNearest

• PointInCell

27.1. iris.analysis 245

Iris, Release 3.0.1

iris.analysis.COUNT→ Aggregator instance.
An Aggregator instance that counts the number of Cube data occurrences that satisfy a partic-
ular criterion, as defined by a user supplied function.

Required kwargs associated with the use of this aggregator:

• function (callable): A function which converts an array of data values into a corresponding
array of True/False values.

For example:

To compute the number of ensemble members with precipitation exceeding 10 (in cube data units)
could be calculated with:

result = precip_cube.collapsed('ensemble_member', iris.analysis.COUNT,
function=lambda values: values > 10)

See also:

The PROPORTION() aggregator.

This aggregator handles masked data.

iris.analysis.GMEAN→ Aggregator instance.
An Aggregator instance that calculates the geometric mean over a Cube, as computed by
scipy.stats.mstats.gmean().

For example:

To compute zonal geometric means over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.GMEAN)

This aggregator handles masked data.

iris.analysis.HMEAN→ Aggregator instance.
An Aggregator instance that calculates the harmonic mean over a Cube, as computed by
scipy.stats.mstats.hmean().

For example:

To compute zonal harmonic mean over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.HMEAN)

Note: The harmonic mean is only valid if all data values are greater than zero.

This aggregator handles masked data.

iris.analysis.MAX→ Aggregator instance.
An Aggregator instance that calculates the maximum over a Cube, as computed by numpy.
ma.max().

For example:

To compute zonal maximums over the longitude axis of a cube:

246 Chapter 27. Iris API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.gmean.html#scipy.stats.mstats.gmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.hmean.html#scipy.stats.mstats.hmean
https://numpy.org/doc/stable/reference/generated/numpy.ma.max.html#numpy.ma.max
https://numpy.org/doc/stable/reference/generated/numpy.ma.max.html#numpy.ma.max

Iris, Release 3.0.1

result = cube.collapsed('longitude', iris.analysis.MAX)

This aggregator handles masked data.

iris.analysis.MEAN→ WeightedAggregator instance.
An Aggregator instance that calculates the mean over a Cube, as computed by numpy.ma.
average().

Additional kwargs associated with the use of this aggregator:

• mdtol (float): Tolerance of missing data. The value returned in each element of the returned
array will be masked if the fraction of masked data contributing to that element exceeds
mdtol. This fraction is calculated based on the number of masked elements. mdtol=0
means no missing data is tolerated while mdtol=1 means the resulting element will be
masked if and only if all the contributing elements are masked. Defaults to 1.

• weights (float ndarray): Weights matching the shape of the cube or the length of the win-
dow for rolling window operations. Note that, latitude/longitude area weights can be
calculated using iris.analysis.cartography.area_weights().

• returned (boolean): Set this to True to indicate that the collapsed weights are to be returned
along with the collapsed data. Defaults to False.

For example:

To compute zonal means over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.MEAN)

To compute a weighted area average:

coords = ('longitude', 'latitude')
collapsed_cube, collapsed_weights = cube.collapsed(coords,

iris.analysis.MEAN,
weights=weights,
returned=True)

Note: Lazy operation is supported, via dask.array.ma.average().

This aggregator handles masked data.

iris.analysis.MEDIAN→ Aggregator instance.
An Aggregator instance that calculates the median over a Cube, as computed by numpy.ma.
median().

For example:

To compute zonal medians over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.MEDIAN)

This aggregator handles masked data.

27.1. iris.analysis 247

https://numpy.org/doc/stable/reference/generated/numpy.ma.average.html#numpy.ma.average
https://numpy.org/doc/stable/reference/generated/numpy.ma.average.html#numpy.ma.average
https://numpy.org/doc/stable/reference/generated/numpy.ma.median.html#numpy.ma.median
https://numpy.org/doc/stable/reference/generated/numpy.ma.median.html#numpy.ma.median

Iris, Release 3.0.1

iris.analysis.MIN→ Aggregator instance.
An Aggregator instance that calculates the minimum over a Cube, as computed by numpy.
ma.min().

For example:

To compute zonal minimums over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.MIN)

This aggregator handles masked data.

iris.analysis.PEAK→ Aggregator instance.
An Aggregator instance that calculates the peak value derived from a spline interpolation over
a Cube.

The peak calculation takes into account nan values. Therefore, if the number of non-nan values is
zero the result itself will be an array of nan values.

The peak calculation also takes into account masked values. Therefore, if the number of non-
masked values is zero the result itself will be a masked array.

If multiple coordinates are specified, then the peak calculations are performed individually, in se-
quence, for each coordinate specified.

For example:

To compute the peak over the time axis of a cube:

result = cube.collapsed('time', iris.analysis.PEAK)

This aggregator handles masked data.

iris.analysis.PERCENTILE
An PercentileAggregator instance that calculates the percentile over a Cube, as computed
by scipy.stats.mstats.mquantiles().

Required kwargs associated with the use of this aggregator:

• percent (float or sequence of floats): Percentile rank/s at which to extract value/s.

Additional kwargs associated with the use of this aggregator:

• alphap (float): Plotting positions parameter, see scipy.stats.mstats.
mquantiles(). Defaults to 1.

• betap (float): Plotting positions parameter, see scipy.stats.mstats.
mquantiles(). Defaults to 1.

For example:

To compute the 10th and 90th percentile over time:

result = cube.collapsed('time', iris.analysis.PERCENTILE, percent=[10,
→˓90])

This aggregator handles masked data.

248 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ma.min.html#numpy.ma.min
https://numpy.org/doc/stable/reference/generated/numpy.ma.min.html#numpy.ma.min
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.mquantiles.html#scipy.stats.mstats.mquantiles

Iris, Release 3.0.1

iris.analysis.PROPORTION→ Aggregator instance.
An Aggregator instance that calculates the proportion, as a fraction, of Cube data occurrences
that satisfy a particular criterion, as defined by a user supplied function.

Required kwargs associated with the use of this aggregator:

• function (callable): A function which converts an array of data values into a corresponding
array of True/False values.

For example:

To compute the probability of precipitation exceeding 10 (in cube data units) across ensemble mem-
bers could be calculated with:

result = precip_cube.collapsed('ensemble_member', iris.analysis.
→˓PROPORTION,

function=lambda values: values > 10)

Similarly, the proportion of time precipitation exceeded 10 (in cube data units) could be calculated
with:

result = precip_cube.collapsed('time', iris.analysis.PROPORTION,
function=lambda values: values > 10)

See also:

The COUNT() aggregator.

This aggregator handles masked data.

iris.analysis.RMS→ WeightedAggregator instance.
An Aggregator instance that calculates the root mean square over a Cube, as computed by
((x0**2 + x1**2 + . . . + xN-1**2) / N) ** 0.5.

Additional kwargs associated with the use of this aggregator:

• weights (float ndarray): Weights matching the shape of the cube or the length of the window
for rolling window operations. The weights are applied to the squares when taking the
mean.

For example:

To compute the zonal root mean square over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.RMS)

This aggregator handles masked data.

iris.analysis.STD_DEV→ Aggregator instance.
An Aggregator instance that calculates the standard deviation over a Cube, as computed by
numpy.ma.std().

Additional kwargs associated with the use of this aggregator:

• ddof (integer): Delta degrees of freedom. The divisor used in calculations is N - ddof, where
N represents the number of elements. Defaults to 1.

For example:

To compute zonal standard deviations over the longitude axis of a cube:

27.1. iris.analysis 249

Iris, Release 3.0.1

result = cube.collapsed('longitude', iris.analysis.STD_DEV)

To obtain the biased standard deviation:

result = cube.collapsed('longitude', iris.analysis.STD_DEV, ddof=0)

Note: Lazy operation is supported, via dask.array.nanstd().

This aggregator handles masked data.

iris.analysis.SUM→ WeightedAggregator instance.
An Aggregator instance that calculates the sum over a Cube, as computed by numpy.ma.
sum().

Additional kwargs associated with the use of this aggregator:

• weights (float ndarray): Weights matching the shape of the cube, or the length of the win-
dow for rolling window operations. Weights should be normalized before using them
with this aggregator if scaling is not intended.

• returned (boolean): Set this to True to indicate the collapsed weights are to be returned along
with the collapsed data. Defaults to False.

For example:

To compute an accumulation over the time axis of a cube:

result = cube.collapsed('time', iris.analysis.SUM)

To compute a weighted rolling sum e.g. to apply a digital filter:

weights = np.array([.1, .2, .4, .2, .1])
result = cube.rolling_window('time', iris.analysis.SUM,

len(weights), weights=weights)

This aggregator handles masked data.

iris.analysis.VARIANCE→ Aggregator instance.
An Aggregator instance that calculates the variance over a Cube, as computed by numpy.ma.
var().

Additional kwargs associated with the use of this aggregator:

• ddof (integer): Delta degrees of freedom. The divisor used in calculations is N - ddof, where
N represents the number of elements. Defaults to 1.

For example:

To compute zonal variance over the longitude axis of a cube:

result = cube.collapsed('longitude', iris.analysis.VARIANCE)

To obtain the biased variance:

250 Chapter 27. Iris API

Iris, Release 3.0.1

result = cube.collapsed('longitude', iris.analysis.VARIANCE, ddof=0)

Note: Lazy operation is supported, via dask.array.nanvar().

This aggregator handles masked data.

iris.analysis.WPERCENTILE
An WeightedPercentileAggregator instance that calculates the weighted percentile over
a Cube.

Required kwargs associated with the use of this aggregator:

• percent (float or sequence of floats): Percentile rank/s at which to extract value/s.

• weights (float ndarray): Weights matching the shape of the cube or the length of the win-
dow for rolling window operations. Note that, latitude/longitude area weights can be
calculated using iris.analysis.cartography.area_weights().

Additional kwargs associated with the use of this aggregator:

• returned (boolean): Set this to True to indicate that the collapsed weights are to be returned
along with the collapsed data. Defaults to False.

• kind (string or int): Specifies the kind of interpolation used, see scipy.interpolate.
interp1d() Defaults to “linear”, which is equivalent to alphap=0.5, betap=0.5 in
iris.analysis.PERCENTILE

The Aggregator class provides common aggregation functionality.

class iris.analysis.Aggregator(cell_method, call_func,
units_func=None, lazy_func=None,
**kwargs)

Create an aggregator for the given call_func.

Args:

• cell_method (string): Cell method definition formatter. Used in the fashion
“cell_method.format(**kwargs)”, to produce a cell-method string which can
include keyword values.

• call_func (callable):

Call signature: (data, axis=None, **kwargs)

Data aggregation function. Returns an aggregation result, collapsing the ‘axis’
dimension of the ‘data’ argument.

Kwargs:

• units_func (callable):

Call signature: (units)

If provided, called to convert a cube’s units. Returns an cf_units.Unit,
or a value that can be made into one.

• lazy_func (callable or None): An alternative to call_func implementing a
lazy aggregation. Note that, it need not support all features of the main op-
eration, but should raise an error in unhandled cases.

27.1. iris.analysis 251

Iris, Release 3.0.1

Additional kwargs:: Passed through to call_func and lazy_func.

Aggregators are used by cube aggregation methods such as collapsed() and
aggregated_by(). For example:

result = cube.collapsed('longitude', iris.analysis.MEAN)

A variety of ready-made aggregators are provided in this module, such as MEAN and
MAX . Custom aggregators can also be created for special purposes, see Calculating a
Custom Statistic for a worked example.

aggregate(data, axis, **kwargs)
Perform the aggregation function given the data.

Keyword arguments are passed through to the data aggregation function (for ex-
ample, the “percent” keyword for a percentile aggregator). This function is usually
used in conjunction with update_metadata(), which should be passed the same key-
word arguments.

Args:
• data (array): Data array.
• axis (int): Axis to aggregate over.

Kwargs:
• mdtol (float): Tolerance of missing data. The value returned will be masked

if the fraction of data to missing data is less than or equal to mdtol. mdtol=0
means no missing data is tolerated while mdtol=1 will return the resulting
value from the aggregation function. Defaults to 1.

• kwargs: All keyword arguments apart from those specified above, are passed
through to the data aggregation function.

Returns The aggregated data.

aggregate_shape(**kwargs)
The shape of the new dimension/s created by the aggregator.

Kwargs:
• This function is intended to be used in conjunction with aggregate() and should

be passed the same keywords.

Returns A tuple of the aggregate shape.

lazy_aggregate(data, axis, **kwargs)
Perform aggregation over the data with a lazy operation, analogous to the ‘aggre-
gate’ result.

Keyword arguments are passed through to the data aggregation function (for ex-
ample, the “percent” keyword for a percentile aggregator). This function is usually
used in conjunction with update_metadata(), which should be passed the same key-
word arguments.

Args:
• data (array): A lazy array (dask.array.Array).
• axis (int or list of int): The dimensions to aggregate over – note that this is

defined differently to the ‘aggregate’ method ‘axis’ argument, which only
accepts a single dimension index.

Kwargs:
• kwargs: All keyword arguments are passed through to the data aggregation

function.

252 Chapter 27. Iris API

Iris, Release 3.0.1

Returns A lazy array representing the aggregation operation (dask.
array.Array).

name()
Returns the name of the aggregator.

post_process(collapsed_cube, data_result, coords, **kwargs)
Process the result from iris.analysis.Aggregator.aggregate().

Args:
• collapsed_cube: A iris.cube.Cube.
• data_result: Result from iris.analysis.Aggregator.

aggregate()
• coords: The one or more coordinates that were aggregated over.

Kwargs:
• This function is intended to be used in conjunction with aggregate() and should

be passed the same keywords (for example, the “ddof” keyword from a stan-
dard deviation aggregator).

Returns The collapsed cube with its aggregated data payload.

update_metadata(cube, coords, **kwargs)
Update cube cell method metadata w.r.t the aggregation function.

Args:
• cube (iris.cube.Cube): Source cube that requires metadata update.
• coords (iris.coords.Coord): The one or more coordinates that were

aggregated.
Kwargs:

• This function is intended to be used in conjunction with aggregate() and should
be passed the same keywords (for example, the “ddof” keyword for a standard
deviation aggregator).

Convenience class that supports common weighted aggregation functionality.

class iris.analysis.WeightedAggregator(cell_method, call_func,
units_func=None,
lazy_func=None,
**kwargs)

Create a weighted aggregator for the given call_func.

Args:

• cell_method (string): Cell method string that supports string format substitution.

• call_func (callable): Data aggregation function. Call signature (data, axis,
**kwargs).

Kwargs:

• units_func (callable): Units conversion function.

• lazy_func (callable or None): An alternative to call_func implementing a
lazy aggregation. Note that, it need not support all features of the main op-
eration, but should raise an error in unhandled cases.

Additional kwargs: Passed through to call_func and lazy_func.

27.1. iris.analysis 253

Iris, Release 3.0.1

aggregate(data, axis, **kwargs)
Perform the aggregation function given the data.

Keyword arguments are passed through to the data aggregation function (for ex-
ample, the “percent” keyword for a percentile aggregator). This function is usually
used in conjunction with update_metadata(), which should be passed the same key-
word arguments.

Args:
• data (array): Data array.
• axis (int): Axis to aggregate over.

Kwargs:
• mdtol (float): Tolerance of missing data. The value returned will be masked

if the fraction of data to missing data is less than or equal to mdtol. mdtol=0
means no missing data is tolerated while mdtol=1 will return the resulting
value from the aggregation function. Defaults to 1.

• kwargs: All keyword arguments apart from those specified above, are passed
through to the data aggregation function.

Returns The aggregated data.

aggregate_shape(**kwargs)
The shape of the new dimension/s created by the aggregator.

Kwargs:
• This function is intended to be used in conjunction with aggregate() and should

be passed the same keywords.

Returns A tuple of the aggregate shape.

lazy_aggregate(data, axis, **kwargs)
Perform aggregation over the data with a lazy operation, analogous to the ‘aggre-
gate’ result.

Keyword arguments are passed through to the data aggregation function (for ex-
ample, the “percent” keyword for a percentile aggregator). This function is usually
used in conjunction with update_metadata(), which should be passed the same key-
word arguments.

Args:
• data (array): A lazy array (dask.array.Array).
• axis (int or list of int): The dimensions to aggregate over – note that this is

defined differently to the ‘aggregate’ method ‘axis’ argument, which only
accepts a single dimension index.

Kwargs:
• kwargs: All keyword arguments are passed through to the data aggregation

function.

Returns A lazy array representing the aggregation operation (dask.
array.Array).

name()
Returns the name of the aggregator.

post_process(collapsed_cube, data_result, coords, **kwargs)
Process the result from iris.analysis.Aggregator.aggregate().

Returns a tuple(cube, weights) if a tuple(data, weights) was returned from iris.
analysis.Aggregator.aggregate().

Args:

254 Chapter 27. Iris API

Iris, Release 3.0.1

• collapsed_cube: A iris.cube.Cube.
• data_result: Result from iris.analysis.Aggregator.

aggregate()
• coords: The one or more coordinates that were aggregated over.

Kwargs:
• This function is intended to be used in conjunction with aggregate() and should

be passed the same keywords (for example, the “weights” keywords from a
mean aggregator).

Returns The collapsed cube with it’s aggregated data payload. Or a tuple
pair of (cube, weights) if the keyword “returned” is specified and True.

update_metadata(cube, coords, **kwargs)
Update cube cell method metadata w.r.t the aggregation function.

Args:
• cube (iris.cube.Cube): Source cube that requires metadata update.
• coords (iris.coords.Coord): The one or more coordinates that were

aggregated.
Kwargs:

• This function is intended to be used in conjunction with aggregate() and should
be passed the same keywords (for example, the “ddof” keyword for a standard
deviation aggregator).

uses_weighting(**kwargs)
Determine whether this aggregator uses weighting.

Kwargs:
• kwargs: Arguments to filter of weighted keywords.

Returns Boolean.

iris.analysis.clear_phenomenon_identity(cube)
Helper function to clear the standard_name, attributes, and cell_methods of a cube.

This class describes the linear interpolation and regridding scheme for interpolating or regridding over
one or more orthogonal coordinates, typically for use with iris.cube.Cube.interpolate() or
iris.cube.Cube.regrid().

class iris.analysis.Linear(extrapolation_mode='linear')
Linear interpolation and regridding scheme suitable for interpolating or regridding over
one or more orthogonal coordinates.

Kwargs:

• extrapolation_mode: Must be one of the following strings:

– ‘extrapolate’ or ‘linear’ - The extrapolation points will be calculated by ex-
tending the gradient of the closest two points.

– ‘nan’ - The extrapolation points will be be set to NaN.

– ‘error’ - A ValueError exception will be raised, notifying an attempt to ex-
trapolate.

– ‘mask’ - The extrapolation points will always be masked, even if the source
data is not a MaskedArray.

27.1. iris.analysis 255

Iris, Release 3.0.1

– ‘nanmask’ - If the source data is a MaskedArray the extrapolation points
will be masked. Otherwise they will be set to NaN.

The default mode of extrapolation is ‘linear’.

interpolator(cube, coords)
Creates a linear interpolator to perform interpolation over the given Cube specified
by the dimensions of the given coordinates.

Typically you should use iris.cube.Cube.interpolate() for interpolat-
ing a cube. There are, however, some situations when constructing your own inter-
polator is preferable. These are detailed in the user guide.

Args:
• cube: The source iris.cube.Cube to be interpolated.
• coords: The names or coordinate instances that are to be interpolated over.

Returns

callable(sample_points, collapse_scalar=True)

where sample_points is a sequence containing an array of values for
each of the coordinates passed to this method, and collapse_scalar de-
termines whether to remove length one dimensions in the result cube
caused by scalar values in sample_points.

The values for coordinates that correspond to date/times may optionally
be supplied as datetime.datetime or cftime.datetime instances.

For example, for the callable returned by: Linear().interpolator(cube,
[‘latitude’, ‘longitude’]), sample_points must have the form
[new_lat_values, new_lon_values].

Return type A callable with the interface

regridder(src_grid, target_grid)
Creates a linear regridder to perform regridding from the source grid to the target
grid.

Typically you should use iris.cube.Cube.regrid() for regridding a cube.
There are, however, some situations when constructing your own regridder is
preferable. These are detailed in the user guide.

Supports lazy regridding. Any chunks in horizontal dimensions will be combined
before regridding.

Args:
• src_grid: The Cube defining the source grid.
• target_grid: The Cube defining the target grid.

Returns

callable(cube)

where cube is a cube with the same grid as src_grid that is to be regrid-
ded to the target_grid.

Return type A callable with the interface

LINEAR_EXTRAPOLATION_MODES = ['extrapolate', 'error', 'nan', 'mask', 'nanmask', 'linear']

This class describes an area-weighted regridding scheme for regridding between ‘ordinary’ horizontal
grids with separated X and Y coordinates in a common coordinate system. Typically for use with iris.
cube.Cube.regrid().

256 Chapter 27. Iris API

https://docs.dask.org/en/latest/array-chunks.html

Iris, Release 3.0.1

class iris.analysis.AreaWeighted(mdtol=1)
Area-weighted regridding scheme suitable for regridding between different orthogonal
XY grids in the same coordinate system.

Kwargs:

• mdtol (float): Tolerance of missing data. The value returned in each element of
the returned array will be masked if the fraction of missing data exceeds mdtol.
This fraction is calculated based on the area of masked cells within each target
cell. mdtol=0 means no masked data is tolerated while mdtol=1 will mean the
resulting element will be masked if and only if all the overlapping elements of
the source grid are masked. Defaults to 1.

regridder(src_grid_cube, target_grid_cube)
Creates an area-weighted regridder to perform regridding from the source grid to
the target grid.

Typically you should use iris.cube.Cube.regrid() for regridding a cube.
There are, however, some situations when constructing your own regridder is
preferable. These are detailed in the user guide.

Supports lazy regridding. Any chunks in horizontal dimensions will be combined
before regridding.

Args:
• src_grid_cube: The Cube defining the source grid.
• target_grid_cube: The Cube defining the target grid.

Returns

callable(cube)

where cube is a cube with the same grid as src_grid_cube that is to be
regridded to the grid of target_grid_cube.

Return type A callable with the interface

This class describes the nearest-neighbour interpolation and regridding scheme for interpolating or
regridding over one or more orthogonal coordinates, typically for use with iris.cube.Cube.
interpolate() or iris.cube.Cube.regrid().

class iris.analysis.Nearest(extrapolation_mode='extrapolate')
Nearest-neighbour interpolation and regridding scheme suitable for interpolating or re-
gridding over one or more orthogonal coordinates.

Kwargs:

• extrapolation_mode: Must be one of the following strings:

– ‘extrapolate’ - The extrapolation points will take their value from the nearest
source point.

– ‘nan’ - The extrapolation points will be be set to NaN.

– ‘error’ - A ValueError exception will be raised, notifying an attempt to ex-
trapolate.

– ‘mask’ - The extrapolation points will always be masked, even if the source
data is not a MaskedArray.

– ‘nanmask’ - If the source data is a MaskedArray the extrapolation points
will be masked. Otherwise they will be set to NaN.

27.1. iris.analysis 257

https://docs.dask.org/en/latest/array-chunks.html

Iris, Release 3.0.1

The default mode of extrapolation is ‘extrapolate’.

interpolator(cube, coords)
Creates a nearest-neighbour interpolator to perform interpolation over the given
Cube specified by the dimensions of the specified coordinates.

Typically you should use iris.cube.Cube.interpolate() for interpolat-
ing a cube. There are, however, some situations when constructing your own inter-
polator is preferable. These are detailed in the user guide.

Args:
• cube: The source iris.cube.Cube to be interpolated.
• coords: The names or coordinate instances that are to be interpolated over.

Returns

callable(sample_points, collapse_scalar=True)

where sample_points is a sequence containing an array of values for
each of the coordinates passed to this method, and collapse_scalar de-
termines whether to remove length one dimensions in the result cube
caused by scalar values in sample_points.

The values for coordinates that correspond to date/times may optionally
be supplied as datetime.datetime or cftime.datetime instances.

For example, for the callable returned by: Nearest().interpolator(cube,
[‘latitude’, ‘longitude’]), sample_points must have the form
[new_lat_values, new_lon_values].

Return type A callable with the interface

regridder(src_grid, target_grid)
Creates a nearest-neighbour regridder to perform regridding from the source grid
to the target grid.

Typically you should use iris.cube.Cube.regrid() for regridding a cube.
There are, however, some situations when constructing your own regridder is
preferable. These are detailed in the user guide.

Supports lazy regridding. Any chunks in horizontal dimensions will be combined
before regridding.

Args:
• src_grid: The Cube defining the source grid.
• target_grid: The Cube defining the target grid.

Returns

callable(cube)

where cube is a cube with the same grid as src_grid that is to be regrid-
ded to the target_grid.

Return type A callable with the interface

This is a nearest-neighbour regridding scheme for regridding data whose horizontal (X- and Y-axis) coor-
dinates are mapped to the same dimensions, rather than being orthogonal on independent dimensions.

For latitude-longitude coordinates, the nearest-neighbour distances are computed on the sphere, otherwise
flat Euclidean distances are used.

The source X and Y coordinates can have any shape.

258 Chapter 27. Iris API

https://docs.dask.org/en/latest/array-chunks.html

Iris, Release 3.0.1

The target grid must be of the “normal” kind, i.e. it has separate, 1-dimensional X and Y coordinates.

Source and target XY coordinates must have the same coordinate system, which may also be None. If any
of the XY coordinates are latitudes or longitudes, then they all must be. Otherwise, the corresponding X
and Y coordinates must have the same units in the source and grid cubes.

Note: Currently only supports regridding, not interpolation.

Note: This scheme performs essentially the same job as iris.experimental.regrid.
ProjectedUnstructuredNearest. That scheme is faster, but only works well on data in a limited
region of the globe, covered by a specified projection. This approach is more rigorously correct and can
be applied to global datasets.

class iris.analysis.UnstructuredNearest
Nearest-neighbour interpolation and regridding scheme suitable for interpolating or re-
gridding from un-gridded data such as trajectories or other data where the X and Y
coordinates share the same dimensions.

regridder(src_cube, target_grid)
Creates a nearest-neighbour regridder, of the
UnstructuredNearestNeigbourRegridder type, to perform regridding
from the source grid to the target grid.

This can then be applied to any source data with the same structure as the original
‘src_cube’.

Typically you should use iris.cube.Cube.regrid() for regridding a cube.
There are, however, some situations when constructing your own regridder is
preferable. These are detailed in the user guide.

Does not support lazy regridding.

Args:
• src_cube: The Cube defining the source grid. The X and Y coordinates can

have any shape, but must be mapped over the same cube dimensions.
• target_grid: The Cube defining the target grid. The X and Y coordinates

must be one-dimensional dimension coordinates, mapped to different di-
mensions. All other cube components are ignored.

Returns

callable(cube)

where cube is a cube with the same grid as src_cube that is to be regrid-
ded to the target_grid.

Return type A callable with the interface

This class describes the point-in-cell regridding scheme for use typically with iris.cube.Cube.
regrid().

The PointInCell regridder can regrid data from a source grid of any dimensionality and in any coordinate
system. The location of each source point is specified by X and Y coordinates mapped over the same cube
dimensions, aka “grid dimensions” : the grid may have any dimensionality. The X and Y coordinates
must also have the same, defined coord_system. The weights, if specified, must have the same shape as
the X and Y coordinates. The output grid can be any ‘normal’ XY grid, specified by separate X and Y

27.1. iris.analysis 259

Iris, Release 3.0.1

coordinates : That is, X and Y have two different cube dimensions. The output X and Y coordinates must
also have a common, specified coord_system.

class iris.analysis.PointInCell(weights=None)
Point-in-cell regridding scheme suitable for regridding over one or more orthogonal
coordinates.

Optional Args:

• weights: A numpy.ndarray instance that defines the weights for the grid cells
of the source grid. Must have the same shape as the data of the source grid. If
unspecified, equal weighting is assumed.

regridder(src_grid, target_grid)
Creates a point-in-cell regridder to perform regridding from the source grid to the
target grid.

Typically you should use iris.cube.Cube.regrid() for regridding a cube.
There are, however, some situations when constructing your own regridder is
preferable. These are detailed in the user guide.

Does not support lazy regridding.

Args:
• src_grid: The Cube defining the source grid.
• target_grid: The Cube defining the target grid.

Returns

callable(cube)

where cube is a cube with the same grid as src_grid that is to be regrid-
ded to the target_grid.

Return type A callable with the interface

27.2 iris.aux_factory

Definitions of derived coordinates.

In this module:

• AuxCoordFactory

• HybridHeightFactory

• HybridPressureFactory

• OceanSFactory

• OceanSg1Factory

• OceanSg2Factory

• OceanSigmaFactory

• OceanSigmaZFactory

Represents a “factory” which can manufacture an additional auxiliary coordinate on demand, by combin-
ing the values of other coordinates.

Each concrete subclass represents a specific formula for deriving values from other coordinates.

260 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

The standard_name, long_name, var_name, units, attributes and coord_system of the factory are used to
set the corresponding properties of the resulting auxiliary coordinates.

class iris.aux_factory.AuxCoordFactory
Represents a “factory” which can manufacture an additional auxiliary coordinate on
demand, by combining the values of other coordinates.

Each concrete subclass represents a specific formula for deriving values from other
coordinates.

The standard_name, long_name, var_name, units, attributes and coord_system of the
factory are used to set the corresponding properties of the resulting auxiliary coordi-
nates.

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

abstract make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

abstract update(old_coord, new_coord=None)
Notifies the factory of a removal/replacement of a dependency.

Args:
• old_coord: The dependency coordinate to be removed/replaced.
• new_coord: If None, the dependency using old_coord is removed, otherwise

the dependency is updated to use new_coord.

27.2. iris.aux_factory 261

Iris, Release 3.0.1

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

abstract property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
Descriptive name of the coordinate made by the factory

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
netCDF variable name for the coordinate made by the factory

Defines a hybrid-height coordinate factory with the formula: z = a + b * orog

class iris.aux_factory.HybridHeightFactory(delta=None,
sigma=None, orogra-
phy=None)

Creates a hybrid-height coordinate factory with the formula: z = a + b * orog

At least one of delta or orography must be provided.

Args:

• delta: Coord The coordinate providing the a term.

• sigma: Coord The coordinate providing the b term.

• orography: Coord The coordinate providing the orog term.

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

262 Chapter 27. Iris API

Iris, Release 3.0.1

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

27.2. iris.aux_factory 263

Iris, Release 3.0.1

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines a hybrid-pressure coordinate factory with the formula: p = ap + b * ps

class iris.aux_factory.HybridPressureFactory(delta=None,
sigma=None, sur-
face_air_pressure=None)

Creates a hybrid-height coordinate factory with the formula: p = ap + b * ps

At least one of delta or surface_air_pressure must be provided.

Args:

• delta: Coord The coordinate providing the ap term.

• sigma: Coord The coordinate providing the b term.

• surface_air_pressure: Coord The coordinate providing the ps term.

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.

264 Chapter 27. Iris API

Iris, Release 3.0.1

• token: If True, ensures that the name returned satisfies the criteria for the
characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines an Ocean s-coordinate factory.

27.2. iris.aux_factory 265

Iris, Release 3.0.1

class iris.aux_factory.OceanSFactory(s=None, eta=None,
depth=None, a=None,
b=None, depth_c=None)

Creates an Ocean s-coordinate factory with the formula:

z(n,k,j,i) = eta(n,j,i)*(1+s(k)) + depth_c*s(k) + (depth(j,i)-depth_c)*C(k)

where:

C(k) = (1-b) * sinh(a*s(k)) / sinh(a) + b * [tanh(a * (s(k) + 0.5)) / (2 *
tanh(0.5*a)) - 0.5]

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

266 Chapter 27. Iris API

Iris, Release 3.0.1

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines an Ocean s-coordinate, generic form 1 factory.

class iris.aux_factory.OceanSg1Factory(s=None, c=None,
eta=None, depth=None,
depth_c=None)

Creates an Ocean s-coordinate, generic form 1 factory with the formula:

z(n,k,j,i) = S(k,j,i) + eta(n,j,i) * (1 + S(k,j,i) / depth(j,i))

where: S(k,j,i) = depth_c * s(k) + (depth(j,i) - depth_c) * C(k)

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

27.2. iris.aux_factory 267

Iris, Release 3.0.1

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

268 Chapter 27. Iris API

Iris, Release 3.0.1

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines an Ocean s-coordinate, generic form 2 factory.

class iris.aux_factory.OceanSg2Factory(s=None, c=None,
eta=None, depth=None,
depth_c=None)

Creates an Ocean s-coordinate, generic form 2 factory with the formula:

z(n,k,j,i) = eta(n,j,i) + (eta(n,j,i) + depth(j,i)) * S(k,j,i)

where:

S(k,j,i) = (depth_c * s(k) + depth(j,i) * C(k)) / (depth_c + depth(j,i))

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:

27.2. iris.aux_factory 269

Iris, Release 3.0.1

• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines an ocean sigma coordinate factory.

class iris.aux_factory.OceanSigmaFactory(sigma=None, eta=None,
depth=None)

Creates an ocean sigma coordinate factory with the formula:

z(n, k, j, i) = eta(n, j, i) + sigma(k) * (depth(j, i) + eta(n, j, i))

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:

270 Chapter 27. Iris API

Iris, Release 3.0.1

• coord_dims_func: A callable which can return the list of dimensions relevant
to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

27.2. iris.aux_factory 271

Iris, Release 3.0.1

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines an ocean sigma over z coordinate factory.

class iris.aux_factory.OceanSigmaZFactory(sigma=None,
eta=None,
depth=None,
depth_c=None,
nsigma=None,
zlev=None)

Creates an ocean sigma over z coordinate factory with the formula:

if k < nsigma:

z(n, k, j, i) = eta(n, j, i) + sigma(k) * (min(depth_c, depth(j, i)) + eta(n, j, i))

if k >= nsigma: z(n, k, j, i) = zlev(k)

The zlev and ‘nsigma’ coordinates must be provided, and at least either eta, or ‘sigma’
and depth and depth_c coordinates.

derived_dims(coord_dims_func)
Returns the cube dimensions for the derived coordinate.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

Returns A sorted list of cube dimension numbers.

make_coord(coord_dims_func)
Returns a new iris.coords.AuxCoord as defined by this factory.

Args:
• coord_dims_func: A callable which can return the list of dimensions relevant

to a given coordinate. See iris.cube.Cube.coord_dims().

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

272 Chapter 27. Iris API

Iris, Release 3.0.1

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

update(old_coord, new_coord=None)
Notifies the factory of the removal/replacement of a coordinate which might be a
dependency.

Args:
• old_coord: The coordinate to be removed/replaced.
• new_coord: If None, any dependency using old_coord is removed, otherwise

any dependency using old_coord is updated to use new_coord.

updated(new_coord_mapping)
Creates a new instance of this factory where the dependencies are replaced accord-
ing to the given mapping.

Args:
• new_coord_mapping: A dictionary mapping from the object IDs potentially

used by this factory, to the coordinate objects that should be used instead.

xml_element(doc)
Returns a DOM element describing this coordinate factory.

property attributes

property climatological
Always returns False, as a factory itself can never have points/bounds and therefore
can never be climatological by definition.

property coord_system
The coordinate-system (if any) of the coordinate made by the factory.

property dependencies
Returns a dictionary mapping from constructor argument names to the correspond-
ing coordinates.

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

27.2. iris.aux_factory 273

Iris, Release 3.0.1

27.3 iris.common

27.3.1 iris.common.lenient

Provides the infrastructure to support lenient client/service behaviour.

In this module:

• LENIENT

• Lenient

iris.common.lenient.LENIENT
(Public) Instance that manages all Iris run-time lenient features.

Thread-local data

class iris.common.lenient.Lenient(**kwargs)
A container for managing the run-time lenient features and options.

Kwargs:
• kwargs (dict) Mapping of lenient key/value options to enable/disable.

Note that, only the lenient “maths” options is available, which controls
lenient/strict cube arithmetic.

For example:

Lenient(maths=False)

Note that, the values of these options are thread-specific.

context(**kwargs)
Return a context manager which allows temporary modification of the
lenient option state within the scope of the context manager.

On entry to the context manager, all provided keyword arguments are
applied. On exit from the context manager, the previous lenient option
state is restored.
For example::

with iris.common.Lenient.context(maths=False): pass

27.3.2 iris.common.metadata

Provides the infrastructure to support the common metadata API.

In this module:

• SERVICES_COMBINE

• SERVICES_DIFFERENCE

• SERVICES_EQUAL

• SERVICES

• AncillaryVariableMetadata

• BaseMetadata

• CellMeasureMetadata

274 Chapter 27. Iris API

Iris, Release 3.0.1

• CoordMetadata

• CubeMetadata

• DimCoordMetadata

• metadata_manager_factory

iris.common.metadata.SERVICES_COMBINE
Convenience collection of lenient metadata combine services.

iris.common.metadata.SERVICES_DIFFERENCE
Convenience collection of lenient metadata difference services.

iris.common.metadata.SERVICES_EQUAL
Convenience collection of lenient metadata equality services.

iris.common.metadata.SERVICES
Convenience collection of lenient metadata services.

Metadata container for a AncillaryVariableMetadata.

class iris.common.metadata.AncillaryVariableMetadata(_cls,
stan-
dard_name,
long_name,
var_name,
units,
at-
tributes)

Create new instance of AncillaryVariableMetadataNamedtu-
ple(standard_name, long_name, var_name, units, attributes)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient combination. The default is

to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

count(value, /)
Return number of occurrences of value.

27.3. iris.common 275

Iris, Release 3.0.1

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

276 Chapter 27. Iris API

Iris, Release 3.0.1

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

Container for common metadata.

class iris.common.metadata.BaseMetadata(_cls, stan-
dard_name,
long_name,
var_name, units,
attributes)

Create new instance of BaseMetadataNamedtuple(standard_name,
long_name, var_name, units, attributes)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient combination. The default is

to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

count(value, /)
Return number of occurrences of value.

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

27.3. iris.common 277

Iris, Release 3.0.1

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

278 Chapter 27. Iris API

Iris, Release 3.0.1

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

Metadata container for a CellMeasure.

class iris.common.metadata.CellMeasureMetadata(_cls,
stan-
dard_name,
long_name,
var_name,
units,
at-
tributes,
mea-
sure)

Create new instance of CellMeasureMetadataNamedtuple(standard_name,
long_name, var_name, units, attributes, measure)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient combination. The default is

to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

count(value, /)
Return number of occurrences of value.

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

27.3. iris.common 279

Iris, Release 3.0.1

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

280 Chapter 27. Iris API

Iris, Release 3.0.1

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property long_name
Alias for field number 1

property measure
Alias for field number 5

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

Metadata container for a Coord.

class iris.common.metadata.CoordMetadata(_cls, stan-
dard_name,
long_name,
var_name,
units, at-
tributes,
coord_system,
climatologi-
cal)

Create new instance of CoordMetadataNamedtuple(standard_name,
long_name, var_name, units, attributes, coord_system, climatological)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient combination. The default is

to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

count(value, /)
Return number of occurrences of value.

27.3. iris.common 281

Iris, Release 3.0.1

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

282 Chapter 27. Iris API

Iris, Release 3.0.1

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property climatological
Alias for field number 6

property coord_system
Alias for field number 5

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

Metadata container for a Cube.

class iris.common.metadata.CubeMetadata(_cls, stan-
dard_name,
long_name,
var_name,
units, attributes,
cell_methods)

Create new instance of CubeMetadataNamedtuple(standard_name,
long_name, var_name, units, attributes, cell_methods)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient combination. The default is

to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

27.3. iris.common 283

Iris, Release 3.0.1

count(value, /)
Return number of occurrences of value.

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

284 Chapter 27. Iris API

Iris, Release 3.0.1

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property cell_methods
Alias for field number 5

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

Metadata container for a DimCoord

class iris.common.metadata.DimCoordMetadata(_cls, stan-
dard_name,
long_name,
var_name,
units,
attributes,
co-
ord_system,
climato-
logical,
circular)

Create new instance of DimCoordMetadataNamedtuple(standard_name,
long_name, var_name, units, attributes, coord_system, climatological, cir-
cular)

__eq__(other)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.

Returns Boolean.

combine(other, lenient=None)
Return a new metadata instance created by combining each of the asso-
ciated metadata members.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:

27.3. iris.common 285

Iris, Release 3.0.1

• lenient (boolean): Enable/disable lenient combination. The default is
to automatically detect whether this lenient operation is enabled.

Returns Metadata instance.

count(value, /)
Return number of occurrences of value.

difference(other, lenient=None)
Return a new metadata instance created by performing a difference com-
parison between each of the associated metadata members.

A metadata member returned with a value of “None” indicates that there
is no difference between the members being compared. Otherwise, a
tuple of the different values is returned.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient difference. The default is to

automatically detect whether this lenient operation is enabled.

Returns Metadata instance of member differences or None.

equal(other, lenient=None)
Determine whether the associated metadata members are equivalent.

Args:
• other (metadata): A metadata instance of the same type.
Kwargs:
• lenient (boolean): Enable/disable lenient equivalence. The default is

to automatically detect whether this lenient operation is enabled.

Returns Boolean.

classmethod from_metadata(other)
Convert the provided metadata instance from a different type to this meta-
data type, using only the relevant metadata members.

Non-common metadata members are set to None.

Args:
• other (metadata): A metadata instance of any type.

Returns New metadata instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.

286 Chapter 27. Iris API

Iris, Release 3.0.1

• token: If True, ensures that the name returned satisfies the criteria for
the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

classmethod token(name)
Determine whether the provided name is a valid NetCDF name and thus
safe to represent a single parsable token.

Args:
• name: The string name to verify

Returns The provided name if valid, otherwise None.

DEFAULT_NAME = 'unknown'

property attributes
Alias for field number 4

property circular
Alias for field number 7

property climatological
Alias for field number 6

property coord_system
Alias for field number 5

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 3

property var_name
Alias for field number 2

iris.common.metadata.metadata_manager_factory(cls, **kwargs)
A class instance factory function responsible for manufacturing metadata instances dy-
namically at runtime.

The factory instances returned by the factory are capable of managing their metadata
state, which can be proxied by the owning container.

Args:

• cls: A subclass of BaseMetadata, defining the metadata to be managed.

Kwargs:

• kwargs: Initial values for the manufactured metadata instance. Unspecified fields
will default to a value of ‘None’.

27.3. iris.common 287

Iris, Release 3.0.1

27.3.3 iris.common.mixin

Provides common metadata mixin behaviour.

In this module:

• CFVariableMixin

None

class iris.common.mixin.CFVariableMixin

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF
variable name, before falling-back to a default value, which itself defaults
to the string ‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults

to the string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for

the characters required by a valid NetCDF name. If it is not pos-
sible to return a valid name, then a ValueError exception is raised.
Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name,
otherwise it will assign it to long_name.

property attributes

property long_name
The CF Metadata long name for the object.

property metadata

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

288 Chapter 27. Iris API

Iris, Release 3.0.1

27.3.4 iris.common.resolve

Provides the infrastructure to support the analysis, identification and combination of metadata
common between two Cube operands into a single resultant Cube, which will be auto-
transposed, and with the appropriate broadcast shape.

In this module:

• Resolve

At present, Resolve is used by Iris solely during cube maths to combine a left-hand Cube
operand and a right-hand Cube operand into a resultant Cube with common metadata, suit-
ably auto-transposed dimensions, and an appropriate broadcast shape.

However, the capability and benefit provided by Resolve may be exercised as a general
means to easily and consistently combine the metadata of two Cube operands together into
a single resultant Cube. This is highlighted through the following use case patterns.

Firstly, creating a resolver instance with specific Cube operands, and then supplying
data with suitable dimensionality and shape to create the resultant resolved Cube, e.g.,

>>> print(cube1)
air_temperature / (K) (time: 240; latitude: 37;
→˓longitude: 49)

Dimension coordinates:
time x -

→˓ -
latitude - x

→˓ -
longitude - -

→˓ x
Auxiliary coordinates:

forecast_period x -
→˓ -

Scalar coordinates:
forecast_reference_time: 1859-09-01 06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
Model scenario: A1B
STASH: m01s03i236
source: Data from Met Office Unified Model 6.05

Cell methods:
mean: time (6 hour)

>>> print(cube2)
air_temperature / (K) (longitude: 49; latitude: 37)

Dimension coordinates:
longitude x -
latitude - x

Scalar coordinates:
forecast_period: 10794 hours
forecast_reference_time: 1859-09-01 06:00:00
height: 1.5 m
time: 1860-06-01 00:00:00, bound=(1859-12-01 00:00:00,

→˓1860-12-01 00:00:00)
Attributes:

Conventions: CF-1.5
Model scenario: E1

(continues on next page)

27.3. iris.common 289

Iris, Release 3.0.1

(continued from previous page)

STASH: m01s03i236
source: Data from Met Office Unified Model 6.05

Cell methods:
mean: time (6 hour)

>>> print(data.shape)
(240, 37, 49)
>>> resolver = Resolve(cube1, cube2)
>>> result = resolver.cube(data)
>>> print(result)
air_temperature / (K) (time: 240; latitude: 37;
→˓longitude: 49)

Dimension coordinates:
time x -

→˓ -
latitude - x

→˓ -
longitude - -

→˓ x
Auxiliary coordinates:

forecast_period x -
→˓ -

Scalar coordinates:
forecast_reference_time: 1859-09-01 06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
STASH: m01s03i236
source: Data from Met Office Unified Model 6.05

Cell methods:
mean: time (6 hour)

Secondly, creating an empty resolver instance, that may be called multiple times with
different Cube operands and different data, e.g.,

>>> resolver = Resolve()
>>> result1 = resolver(cube1, cube2).cube(data1)
>>> result2 = resolver(cube3, cube4).cube(data2)

Lastly, creating a resolver instance with specific Cube operands, and then supply different
data multiple times, e.g.,

>>> payload = (data1, data2, data3)
>>> resolver = Resolve(cube1, cube2)
>>> results = [resolver.cube(data) for data in payload]

class iris.common.resolve.Resolve(lhs=None, rhs=None)
Resolve the provided lhs Cube operand and rhs Cube operand to deter-
mine the metadata that is common between them, and the auto-transposed,
broadcast shape of the resultant Cube.

This includes the identification of common CubeMetadata, DimCoord,
AuxCoord, and AuxCoordFactory metadata.

Note: Resolving common AncillaryVariable and CellMeasure

290 Chapter 27. Iris API

Iris, Release 3.0.1

metadata is not supported at this time. (Issue #3839)

Note: A Resolve instance is callable, allowing two new lhs and rhs
Cube operands to be resolved. Note that, Resolve only supports resolving
two operands at a time, and no more.

Warning: Resolve attempts to preserve commutativity, but this may
not be possible when auto-transposition or extended broadcasting is in-
volved during the operation.

For example:

>>> cube1
<iris 'Cube' of air_temperature / (K) (time: 240;
→˓latitude: 37; longitude: 49)>
>>> cube2
<iris 'Cube' of air_temperature / (K) (longitude: 49;
→˓latitude: 37)>
>>> result1 = Resolve(cube1, cube2).cube(data)
>>> result2 = Resolve(cube2, cube1).cube(data)
>>> result1 == result2
True

Kwargs:
• lhs: The left-hand-side Cube operand.
• rhs: The right-hand-side Cube operand.

__call__(lhs, rhs)
Resolve the lhs Cube operand and rhs Cube operand metadata.

Involves determining all the common coordinate metadata shared be-
tween the operands, and the metadata that is local to each operand.
Given the common metadata, the broadcast shape of the resultant re-
solved Cube, which may be auto-transposed, can be determined.

Args:
• lhs: The left-hand-side Cube operand.
• rhs: The right-hand-side Cube operand.

cube(data, in_place=False)
Create the resultant Cube from the resolved lhs and rhs Cube
operands, using the provided data.

Args:
• data: The data payload for the resultant Cube, which must match

the expected resolved shape.
Kwargs:
• in_place: If True, the data is inserted into the tgt Cube. The

existing metadata of the tgt Cube is replaced with the resolved
metadata from the lhs and rhs Cube operands. Otherwise, a new
Cube instance is returned. Default is False.

Returns Cube

27.3. iris.common 291

https://github.com/SciTools/iris/issues/3839

Iris, Release 3.0.1

Note: Resolve will determine whether the lhs Cube operand is
mapped to the rhs Cube operand, or vice versa. In general, the lower
rank operand (src) is mapped to the higher rank operand (tgt).
Therefore, the src Cube may be either the lhs or the rhs Cube
operand, given the direction of the mapping. See map_rhs_to_lhs.

Warning: It may not be possible to perform an in_place opera-
tion, due to any transposition or extended broadcasting that requires
to be performed i.e., the tgt Cube must match the expected re-
solved shape.

For example:

>>> resolver = Resolve(cube1, cube2)
>>> resolver.map_rhs_to_lhs
True
>>> cube1.data.sum()
124652160.0
>>> zeros.shape
(240, 37, 49)
>>> zeros.sum()
0.0
>>> result = resolver.cube(zeros, in_place=True)
>>> result is cube1
True
>>> cube1.data.sum()
0.0

category_common
Categorised dim, aux and scalar coordinate items common to both the
lhs Cube and the rhs Cube.

lhs_cube
The lhs operand to be resolved into the resultant Cube.

lhs_cube_aux_coverage
Analysis of aux and scalar coordinates spanning the lhs Cube.

lhs_cube_category
Categorised dim, aux and scalar coordinate items for lhs Cube.

lhs_cube_category_local
Categorised dim, aux and scalar coordinate items local to the lhs Cube
only.

lhs_cube_dim_coverage
Analysis of dim coordinates spanning the lhs Cube.

lhs_cube_resolved
The transposed/reshaped (if required) lhs Cube, which can be broad-
cast with the rhs Cube.

map_rhs_to_lhs
Map common metadata from the rhs Cube to the lhs Cube if
lhs-rank >= rhs-rank, otherwise map common metadata from the
lhs Cube to the rhs Cube.

292 Chapter 27. Iris API

Iris, Release 3.0.1

property mapped
Boolean state representing whether all src Cube dimensions have been
associated with relevant tgt Cube dimensions.

Note: Resolve will determine whether the lhs Cube operand is
mapped to the rhs Cube operand, or vice versa. In general, the lower
rank operand (src) is mapped to the higher rank operand (tgt).
Therefore, the src Cube may be either the lhs or the rhs Cube
operand, given the direction of the mapping. See map_rhs_to_lhs.

If no Cube operands have been provided, then mapped is None.

For example:

>>> print(cube1)
air_temperature / (K) (time: 240;
→˓latitude: 37; longitude: 49)

Dimension coordinates:
time x

→˓ - -
latitude -

→˓ x -
longitude -

→˓ - x
Auxiliary coordinates:

forecast_period x
→˓ - -

Scalar coordinates:
forecast_reference_time: 1859-09-01

→˓06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
Model scenario: A1B
STASH: m01s03i236
source: Data from Met Office Unified Model

→˓6.05
Cell methods:

mean: time (6 hour)
>>> print(cube2)
air_temperature / (K) (longitude: 49;
→˓latitude: 37)

Dimension coordinates:
longitude x

→˓ -
latitude -

→˓ x
Scalar coordinates:

forecast_period: 10794 hours
forecast_reference_time: 1859-09-01

→˓06:00:00
height: 1.5 m
time: 1860-06-01 00:00:00, bound=(1859-12-

→˓01 00:00:00, 1860-12-01 00:00:00)
Attributes:

Conventions: CF-1.5

(continues on next page)

27.3. iris.common 293

Iris, Release 3.0.1

(continued from previous page)

Model scenario: E1
STASH: m01s03i236
source: Data from Met Office Unified Model

→˓6.05
Cell methods:

mean: time (6 hour)
>>> Resolve().mapped is None
True
>>> resolver = Resolve(cube1, cube2)
>>> resolver.mapped
True
>>> resolver.map_rhs_to_lhs
True
>>> resolver = Resolve(cube2, cube1)
>>> resolver.mapped
True
>>> resolver.map_rhs_to_lhs
False

mapping
Mapping of the dimensions between common metadata for the
Cube operands, where the direction of the mapping is governed by
map_rhs_to_lhs.

prepared_category
Cache containing a list of dim, aux and scalar coordinates prepared and
ready for creating and attaching to the resultant resolved Cube.

prepared_factories
Cache containing a list of aux factories prepared and ready for creating
and attaching to the resultant resolved Cube.

rhs_cube
The rhs operand to be resolved into the resultant Cube.

rhs_cube_aux_coverage
Analysis of aux and scalar coordinates spanning the rhs Cube.

rhs_cube_category
Categorised dim, aux and scalar coordinate items for rhs Cube.

rhs_cube_category_local
Categorised dim, aux and scalar coordinate items local to the rhs Cube
only.

rhs_cube_dim_coverage
Analysis of dim coordinates spanning the rhs Cube.

rhs_cube_resolved
The transposed/reshaped (if required) rhs Cube, which can be broad-
cast with the lhs Cube.

property shape
Proposed shape of the final resolved cube given the lhs Cube operand
and the rhs Cube operand.

If no Cube operands have been provided, then shape is None.

For example:

294 Chapter 27. Iris API

Iris, Release 3.0.1

>>> print(cube1)
air_temperature / (K) (time: 240;
→˓latitude: 37; longitude: 49)

Dimension coordinates:
time x

→˓ - -
latitude -

→˓ x -
longitude -

→˓ - x
Auxiliary coordinates:

forecast_period x
→˓ - -

Scalar coordinates:
forecast_reference_time: 1859-09-01

→˓06:00:00
height: 1.5 m

Attributes:
Conventions: CF-1.5
Model scenario: A1B
STASH: m01s03i236
source: Data from Met Office Unified Model

→˓6.05
Cell methods:

mean: time (6 hour)
>>> print(cube2)
air_temperature / (K) (longitude: 49;
→˓latitude: 37)

Dimension coordinates:
longitude x

→˓ -
latitude -

→˓ x
Scalar coordinates:

forecast_period: 10794 hours
forecast_reference_time: 1859-09-01

→˓06:00:00
height: 1.5 m
time: 1860-06-01 00:00:00, bound=(1859-12-

→˓01 00:00:00, 1860-12-01 00:00:00)
Attributes:

Conventions: CF-1.5
Model scenario: E1
STASH: m01s03i236
source: Data from Met Office Unified Model

→˓6.05
Cell methods:

mean: time (6 hour)
>>> Resolve().shape is None
True
>>> Resolve(cube1, cube2).shape
(240, 37, 49)
>>> Resolve(cube2, cube1).shape
(240, 37, 49)

A package for provisioning common Iris infrastructure.

In this module:

27.3. iris.common 295

Iris, Release 3.0.1

27.4 iris.config

Provides access to Iris-specific configuration values.

The default configuration values can be overridden by creating the file iris/etc/site.cfg. If it
exists, this file must conform to the format defined by ConfigParser.

iris.config.TEST_DATA_DIR
Local directory where test data exists. Defaults to “test_data” sub-directory of the Iris package
install directory. The test data directory supports the subset of Iris unit tests that require data.
Directory contents accessed via iris.tests.get_data_path().

iris.config.PALETTE_PATH
The full path to the Iris palette configuration directory

iris.config.IMPORT_LOGGER
The [optional] name of the logger to notify when first imported.

In this module:

• netcdf

• get_dir_option

• get_logger

• get_option

• NetCDF

iris.config.netcdf
Control Iris NetCDF options.

iris.config.get_dir_option(section, option, default=None)
Returns the directory path from the given option and section, or returns the given default value if
the section/option is not present or does not represent a valid directory.

iris.config.get_logger(name, datefmt=None, fmt=None, level=None, propa-
gate=None)

Create a logging.Logger with a logging.StreamHandler and custom logging.
Formatter.

Args:

• name: The name of the logger. Typically this is the module filename that owns the logger.

Kwargs:

• datefmt: The date format string of the logging.Formatter. Defaults to %d-%m-%Y
%H:%M:%S.

• fmt: The additional format string of the logging.Formatter. This is ap-
pended to the default format string %(asctime)s %(name)s %(levelname)s -
%(message)s.

• level: The threshold level of the logger. Defaults to INFO.

296 Chapter 27. Iris API

https://docs.python.org/2.7/library/configparser.html#module-ConfigParser
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://docs.python.org/2.7/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/2.7/library/logging.html#logging.Formatter
https://docs.python.org/2.7/library/logging.html#logging.Formatter
https://docs.python.org/2.7/library/logging.html#logging.Formatter
https://docs.python.org/2.7/library/logging.html#logging.Formatter

Iris, Release 3.0.1

• propagate: Sets the propagate attribute of the logging.Logger, which determines
whether events logged to this logger will be passed to the handlers of higher level loggers.
Defaults to False.

iris.config.get_option(section, option, default=None)
Returns the option value for the given section, or the default value if the section/option is not
present.

Control Iris NetCDF options.

class iris.config.NetCDF(conventions_override=None)
Set up NetCDF processing options for Iris.

Currently accepted kwargs:

• conventions_override (bool): Define whether the CF Conventions version (e.g.
CF-1.6) set when saving a cube to a NetCDF file should be defined by Iris (the
default) or the cube being saved.

If False (the default), specifies that Iris should set the CF Conventions version
when saving cubes as NetCDF files. If True, specifies that the cubes being
saved to NetCDF should set the CF Conventions version for the saved NetCDF
files.

Example usages:

• Specify, for the lifetime of the session, that we want all cubes written to NetCDF
to define their own CF Conventions versions:

iris.config.netcdf.conventions_override = True
iris.save('my_cube', 'my_dataset.nc')
iris.save('my_second_cube', 'my_second_dataset.nc')

• Specify, with a context manager, that we want a cube written to NetCDF to define
its own CF Conventions version:

with iris.config.netcdf.context(conventions_override=True):
iris.save('my_cube', 'my_dataset.nc')

context(**kwargs)
Allow temporary modification of the options via a context manager. Accepted
kwargs are the same as can be supplied to the Option.

27.5 iris.coord_categorisation

Cube functions for coordinate categorisation.

All the functions provided here add a new coordinate to a cube.

• The function add_categorised_coord() performs a generic coordinate categorisation.

• The other functions all implement specific common cases (e.g. add_day_of_month()).
Currently, these are all calendar functions, so they only apply to “Time coordinates”.

In this module:

27.5. iris.coord_categorisation 297

https://docs.python.org/2.7/library/logging.html#logging.Logger

Iris, Release 3.0.1

• add_categorised_coord

• add_day_of_month

• add_day_of_year

• add_hour

• add_month

• add_month_fullname

• add_month_number

• add_season

• add_season_membership

• add_season_number

• add_season_year

• add_weekday

• add_weekday_fullname

• add_weekday_number

• add_year

iris.coord_categorisation.add_categorised_coord(cube, name, from_coord,
category_function,
units='1')

Add a new coordinate to a cube, by categorising an existing one.

Make a new iris.coords.AuxCoord from mapped values, and add it to the cube.

Args:

• cube (iris.cube.Cube): the cube containing ‘from_coord’. The new coord will be
added into it.

• name (string): name of the created coordinate

• from_coord (iris.coords.Coord or string): coordinate in ‘cube’, or the name of one

• category_function (callable): function(coordinate, value), returning a category value for a
coordinate point-value

Kwargs:

• units: units of the category value, typically ‘no_unit’ or ‘1’.

iris.coord_categorisation.add_day_of_month(cube, coord,
name='day_of_month')

Add a categorical day-of-month coordinate, values 1..31.

iris.coord_categorisation.add_day_of_year(cube, coord, name='day_of_year')
Add a categorical day-of-year coordinate, values 1..365 (1..366 in leap years).

iris.coord_categorisation.add_hour(cube, coord, name='hour')
Add a categorical hour coordinate, values 0..23.

298 Chapter 27. Iris API

Iris, Release 3.0.1

iris.coord_categorisation.add_month(cube, coord, name='month')
Add a categorical month coordinate, values ‘Jan’..’Dec’.

iris.coord_categorisation.add_month_fullname(cube, coord,
name='month_fullname')

Add a categorical month coordinate, values ‘January’..’December’.

iris.coord_categorisation.add_month_number(cube, coord,
name='month_number')

Add a categorical month coordinate, values 1..12.

iris.coord_categorisation.add_season(cube, coord, name='season', sea-
sons=('djf', 'mam', 'jja', 'son'))

Add a categorical season-of-year coordinate, with user specified seasons.

Args:

• cube (iris.cube.Cube): The cube containing ‘coord’. The new coord will be added into
it.

• coord (iris.coords.Coord or string): Coordinate in ‘cube’, or its name, representing
time.

Kwargs:

• name (string): Name of the created coordinate. Defaults to “season”.

• seasons (list of strings): List of seasons defined by month abbreviations. Each month
must appear once and only once. Defaults to standard meteorological seasons (‘djf’,
‘mam’, ‘jja’, ‘son’).

iris.coord_categorisation.add_season_membership(cube, coord, season,
name='season_membership')

Add a categorical season membership coordinate for a user specified season.

The coordinate has the value True for every time that is within the given season, and the value False
otherwise.

Args:

• cube (iris.cube.Cube): The cube containing ‘coord’. The new coord will be added into
it.

• coord (iris.coords.Coord or string): Coordinate in ‘cube’, or its name, representing
time.

• season (string): Season defined by month abbreviations.

Kwargs:

• name (string): Name of the created coordinate. Defaults to “season_membership”.

27.5. iris.coord_categorisation 299

Iris, Release 3.0.1

iris.coord_categorisation.add_season_number(cube, coord,
name='season_number', sea-
sons=('djf', 'mam', 'jja', 'son'))

Add a categorical season-of-year coordinate, values 0..N-1 where N is the number of user specified
seasons.

Args:

• cube (iris.cube.Cube): The cube containing ‘coord’. The new coord will be added into
it.

• coord (iris.coords.Coord or string): Coordinate in ‘cube’, or its name, representing
time.

Kwargs:

• name (string): Name of the created coordinate. Defaults to “season_number”.

• seasons (list of strings): List of seasons defined by month abbreviations. Each month
must appear once and only once. Defaults to standard meteorological seasons (‘djf’,
‘mam’, ‘jja’, ‘son’).

iris.coord_categorisation.add_season_year(cube, coord, name='season_year',
seasons=('djf', 'mam', 'jja', 'son'))

Add a categorical year-of-season coordinate, with user specified seasons.

Args:

• cube (iris.cube.Cube): The cube containing ‘coord’. The new coord will be added into
it.

• coord (iris.coords.Coord or string): Coordinate in ‘cube’, or its name, representing
time.

Kwargs:

• name (string): Name of the created coordinate. Defaults to “season_year”.

• seasons (list of strings): List of seasons defined by month abbreviations. Each month
must appear once and only once. Defaults to standard meteorological seasons (‘djf’,
‘mam’, ‘jja’, ‘son’).

iris.coord_categorisation.add_weekday(cube, coord, name='weekday')
Add a categorical weekday coordinate, values ‘Mon’..’Sun’.

iris.coord_categorisation.add_weekday_fullname(cube, coord,
name='weekday_fullname')

Add a categorical weekday coordinate, values ‘Monday’..’Sunday’.

iris.coord_categorisation.add_weekday_number(cube, coord,
name='weekday_number')

Add a categorical weekday coordinate, values 0..6 [0=Monday].

iris.coord_categorisation.add_year(cube, coord, name='year')
Add a categorical calendar-year coordinate.

300 Chapter 27. Iris API

Iris, Release 3.0.1

27.6 iris.coord_systems

Definitions of coordinate systems.

In this module:

• AlbersEqualArea

• CoordSystem

• GeogCS

• Geostationary

• LambertAzimuthalEqualArea

• LambertConformal

• Mercator

• OSGB

• Orthographic

• RotatedGeogCS

• Stereographic

• TransverseMercator

• VerticalPerspective

A coordinate system in the Albers Conical Equal Area projection.

class iris.coord_systems.AlbersEqualArea(latitude_of_projection_origin=None,
longi-
tude_of_central_meridian=None,
false_easting=None,
false_northing=None,
stan-
dard_parallels=None,
ellipsoid=None)

Constructs a Albers Conical Equal Area coord system.

Kwargs:

• latitude_of_projection_origin: True latitude of planar origin in degrees. Defaults
to 0.0 .

• longitude_of_central_meridian: True longitude of planar central meridian in de-
grees. Defaults to 0.0 .

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• standard_parallels (number or iterable of 1 or 2 numbers): The one or two
latitudes of correct scale. Defaults to (20.0, 50.0).

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

27.6. iris.coord_systems 301

Iris, Release 3.0.1

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'albers_conical_equal_area'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_central_meridian
True longitude of planar central meridian in degrees.

standard_parallels
The one or two latitudes of correct scale (tuple of 1 or 2 floats).

Abstract base class for coordinate systems.

class iris.coord_systems.CoordSystem
Abstract base class for coordinate systems.

abstract as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

abstract as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

grid_mapping_name = None

A geographic (ellipsoidal) coordinate system, defined by the shape of the Earth and a prime meridian.

class iris.coord_systems.GeogCS(semi_major_axis=None,
semi_minor_axis=None, in-
verse_flattening=None, longi-
tude_of_prime_meridian=None)

Creates a new GeogCS.

Kwargs:

302 Chapter 27. Iris API

Iris, Release 3.0.1

• semi_major_axis, semi_minor_axis: Axes of ellipsoid, in metres. At least one
must be given (see note below).

• inverse_flattening: Can be omitted if both axes given (see note below). Defaults
to 0.0 .

• longitude_of_prime_meridian: Specifies the prime meridian on the ellipsoid, in
degrees. Defaults to 0.0 .

If just semi_major_axis is set, with no semi_minor_axis or inverse_flattening, then a
perfect sphere is created from the given radius.

If just two of semi_major_axis, semi_minor_axis, and inverse_flattening are given
the missing element is calculated from the formula: 𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 = (𝑚𝑎𝑗𝑜𝑟 −
𝑚𝑖𝑛𝑜𝑟)/𝑚𝑎𝑗𝑜𝑟

Currently, Iris will not allow over-specification (all three ellipsoid parameters).

Examples:

cs = GeogCS(6371229)
pp_cs = GeogCS(iris.fileformats.pp.EARTH_RADIUS)
airy1830 = GeogCS(semi_major_axis=6377563.396,

semi_minor_axis=6356256.909)
airy1830 = GeogCS(semi_major_axis=6377563.396,

inverse_flattening=299.3249646)
custom_cs = GeogCS(6400000, 6300000)

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_globe()

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc)
Default behaviour for coord systems.

grid_mapping_name = 'latitude_longitude'

inverse_flattening
1/𝑓 where 𝑓 = (𝑎− 𝑏)/𝑎.

longitude_of_prime_meridian
Describes ‘zero’ on the ellipsoid in degrees.

semi_major_axis
Major radius of the ellipsoid in metres.

semi_minor_axis
Minor radius of the ellipsoid in metres.

A geostationary satellite image map projection.

27.6. iris.coord_systems 303

Iris, Release 3.0.1

class iris.coord_systems.Geostationary(latitude_of_projection_origin,
longi-
tude_of_projection_origin,
perspective_point_height,
sweep_angle_axis,
false_easting=None,
false_northing=None,
ellipsoid=None)

Constructs a Geostationary coord system.

Args:

• latitude_of_projection_origin: True latitude of planar origin in degrees.

• longitude_of_projection_origin: True longitude of planar origin in degrees.

• perspective_point_height: Altitude of satellite in metres above the surface of the
ellipsoid.

• sweep_angle_axis (string): The axis along which the satellite instrument sweeps
- ‘x’ or ‘y’.

Kwargs:

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'geostationary'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_projection_origin
True longitude of planar origin in degrees.

perspective_point_height
Altitude of satellite in metres.

sweep_angle_axis
The sweep angle axis (string ‘x’ or ‘y’).

304 Chapter 27. Iris API

Iris, Release 3.0.1

A coordinate system in the Lambert Azimuthal Equal Area projection.

class iris.coord_systems.LambertAzimuthalEqualArea(latitude_of_projection_origin=None,
longi-
tude_of_projection_origin=None,
false_easting=None,
false_northing=None,
ellip-
soid=None)

Constructs a Lambert Azimuthal Equal Area coord system.

Kwargs:

• latitude_of_projection_origin: True latitude of planar origin in degrees. Defaults
to 0.0 .

• longitude_of_projection_origin: True longitude of planar origin in degrees. De-
faults to 0.0 .

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'lambert_azimuthal_equal_area'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_projection_origin
True longitude of planar origin in degrees.

A coordinate system in the Lambert Conformal conic projection.

27.6. iris.coord_systems 305

Iris, Release 3.0.1

class iris.coord_systems.LambertConformal(central_lat=None,
central_lon=None,
false_easting=None,
false_northing=None,
secant_latitudes=None,
ellipsoid=None)

Constructs a LambertConformal coord system.

Kwargs:

• central_lat: The latitude of “unitary scale”. Defaults to 39.0 .

• central_lon: The central longitude. Defaults to -96.0 .

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• secant_latitudes (number or iterable of 1 or 2 numbers): Latitudes of secant
intersection. One or two. Defaults to (33.0, 45.0).

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

central_lat
True latitude of planar origin in degrees.

central_lon
True longitude of planar origin in degrees.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'lambert_conformal_conic'

secant_latitudes
The standard parallels of the cone (tuple of 1 or 2 floats).

A coordinate system in the Mercator projection.

class iris.coord_systems.Mercator(longitude_of_projection_origin=None,
ellipsoid=None, stan-
dard_parallel=None)

Constructs a Mercator coord system.

306 Chapter 27. Iris API

Iris, Release 3.0.1

Kwargs:

• longitude_of_projection_origin: True longitude of planar origin in degrees. De-
faults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

• standard_parallel: The latitude where the scale is 1. Defaults to 0.0 .

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

grid_mapping_name = 'mercator'

longitude_of_projection_origin
True longitude of planar origin in degrees.

standard_parallel
The latitude where the scale is 1.

A Specific transverse mercator projection on a specific ellipsoid.

class iris.coord_systems.OSGB
A Specific transverse mercator projection on a specific ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

grid_mapping_name = 'transverse_mercator'

An orthographic map projection.

class iris.coord_systems.Orthographic(latitude_of_projection_origin,
longi-
tude_of_projection_origin,
false_easting=None,
false_northing=None, el-
lipsoid=None)

Constructs an Orthographic coord system.

27.6. iris.coord_systems 307

Iris, Release 3.0.1

Args:

• latitude_of_projection_origin: True latitude of planar origin in degrees.

• longitude_of_projection_origin: True longitude of planar origin in degrees.

Kwargs:

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'orthographic'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_projection_origin
True longitude of planar origin in degrees.

A coordinate system with rotated pole, on an optional GeogCS.

class iris.coord_systems.RotatedGeogCS(grid_north_pole_latitude,
grid_north_pole_longitude,
north_pole_grid_longitude=None,
ellipsoid=None)

Constructs a coordinate system with rotated pole, on an optional GeogCS.

Args:

• grid_north_pole_latitude: The true latitude of the rotated pole in degrees.

• grid_north_pole_longitude: The true longitude of the rotated pole in degrees.

Kwargs:

• north_pole_grid_longitude: Longitude of true north pole in rotated grid, in de-
grees. Defaults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

308 Chapter 27. Iris API

Iris, Release 3.0.1

Examples:

rotated_cs = RotatedGeogCS(30, 30)
another_cs = RotatedGeogCS(30, 30,

ellipsoid=GeogCS(6400000, 6300000))

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

grid_mapping_name = 'rotated_latitude_longitude'

grid_north_pole_latitude
The true latitude of the rotated pole in degrees.

grid_north_pole_longitude
The true longitude of the rotated pole in degrees.

north_pole_grid_longitude
Longitude of true north pole in rotated grid in degrees.

A stereographic map projection.

class iris.coord_systems.Stereographic(central_lat, central_lon,
false_easting=None,
false_northing=None,
true_scale_lat=None,
ellipsoid=None)

Constructs a Stereographic coord system.

Args:

• central_lat: The latitude of the pole.

• central_lon: The central longitude, which aligns with the y axis.

Kwargs:

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• true_scale_lat: Latitude of true scale.

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

27.6. iris.coord_systems 309

Iris, Release 3.0.1

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

central_lat
True latitude of planar origin in degrees.

central_lon
True longitude of planar origin in degrees.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'stereographic'

true_scale_lat
Latitude of true scale.

A cylindrical map projection, with XY coordinates measured in metres.

class iris.coord_systems.TransverseMercator(latitude_of_projection_origin,
longi-
tude_of_central_meridian,
false_easting=None,
false_northing=None,
scale_factor_at_central_meridian=None,
ellipsoid=None)

Constructs a TransverseMercator object.

Args:

• latitude_of_projection_origin: True latitude of planar origin in degrees.

• longitude_of_central_meridian: True longitude of planar origin in degrees.

Kwargs:

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• scale_factor_at_central_meridian: Reduces the cylinder to slice through the el-
lipsoid (secant form). Used to provide TWO longitudes of zero distortion in
the area of interest. Defaults to 1.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

Example:

310 Chapter 27. Iris API

Iris, Release 3.0.1

airy1830 = GeogCS(6377563.396, 6356256.909)
osgb = TransverseMercator(49, -2, 400000, -100000, 0.9996012717,

ellipsoid=airy1830)

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'transverse_mercator'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_central_meridian
True longitude of planar origin in degrees.

scale_factor_at_central_meridian
Scale factor at the centre longitude.

A vertical/near-side perspective satellite image map projection.

class iris.coord_systems.VerticalPerspective(latitude_of_projection_origin,
longi-
tude_of_projection_origin,
perspec-
tive_point_height,
false_easting=None,
false_northing=None,
ellipsoid=None)

Constructs a Vertical Perspective coord system.

Args:

• latitude_of_projection_origin: True latitude of planar origin in degrees.

• longitude_of_projection_origin: True longitude of planar origin in degrees.

• perspective_point_height: Altitude of satellite in metres above the surface of the
ellipsoid.

Kwargs:

• false_easting: X offset from planar origin in metres. Defaults to 0.0 .

27.6. iris.coord_systems 311

Iris, Release 3.0.1

• false_northing: Y offset from planar origin in metres. Defaults to 0.0 .

• ellipsoid (GeogCS): If given, defines the ellipsoid.

as_cartopy_crs()
Return a cartopy CRS representing our native coordinate system.

as_cartopy_projection()
Return a cartopy projection representing our native map.

This will be the same as the as_cartopy_crs() for map projections but for
spherical coord systems (which are not map projections) we use a map projection,
such as PlateCarree.

xml_element(doc, attrs=None)
Default behaviour for coord systems.

ellipsoid
Ellipsoid definition (GeogCS or None).

false_easting
X offset from planar origin in metres.

false_northing
Y offset from planar origin in metres.

grid_mapping_name = 'vertical_perspective'

latitude_of_projection_origin
True latitude of planar origin in degrees.

longitude_of_projection_origin
True longitude of planar origin in degrees.

perspective_point_height
Altitude of satellite in metres.

27.7 iris.coords

Definitions of coordinates and other dimensional metadata.

In this module:

• AncillaryVariable

• AuxCoord

• Cell

• CellMeasure

• CellMethod

• Coord

• CoordExtent

• DimCoord

Superclass for dimensional metadata.

312 Chapter 27. Iris API

Iris, Release 3.0.1

class iris.coords.AncillaryVariable(data, standard_name=None,
long_name=None,
var_name=None, units=None,
attributes=None)

Constructs a single ancillary variable.

Args:

• data: The values of the ancillary variable.

Kwargs:

• standard_name: CF standard name of the ancillary variable.

• long_name: Descriptive name of the ancillary variable.

• var_name: The netCDF variable name for the ancillary variable.

• units The Unit of the ancillary variable’s values. Can be a string, which will be
converted to a Unit object.

• attributes A dictionary containing other cf and user-defined attributes.

__binary_operator__(other, mode_constant)
Common code which is called by add, sub, mul and div

Mode constant is one of ADD, SUB, MUL, DIV, RDIV

Note: The unit is not changed when doing scalar operations on a metadata object.
This means that a metadata object which represents “10 meters” when multiplied
by a scalar i.e. “1000” would result in a metadata object of “10000 meters”. An
alternative approach could be taken to multiply the unit by 1000 and the resultant
metadata object would represent “10 kilometers”.

__getitem__(keys)
Returns a new dimensional metadata whose values are obtained by conventional
array indexing.

Note: Indexing of a circular coordinate results in a non-circular coordinate if the
overall shape of the coordinate changes after indexing.

convert_units(unit)
Change the units, converting the values of the metadata.

copy(values=None)
Returns a copy of this dimensional metadata object.

Kwargs:
• values An array of values for the new dimensional metadata object. This may

be a different shape to the original values array being copied.

core_data()
The data array at the core of this ancillary variable, which may be a NumPy array
or a dask array.

cube_dims(cube)
Return the cube dimensions of this AncillaryVariable.

Equivalent to “cube.ancillary_variable_dims(self)”.

27.7. iris.coords 313

Iris, Release 3.0.1

has_bounds()
Return a boolean indicating whether the current dimensional metadata object has a
bounds array.

has_lazy_data()
Return a boolean indicating whether the ancillary variable’s data array is a lazy
dask array or not.

is_compatible(other, ignore=None)
Return whether the current dimensional metadata object is compatible with an-
other.

lazy_data()
Return a lazy array representing the ancillary variable’s data.

Accessing this method will never cause the data values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the ancillary
variable to have loaded data.

If the data have already been loaded for the ancillary variable, the returned Array
will be a new lazy array wrapper.

Returns A lazy array, representing the ancillary variable data array.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

xml_element(doc)
Return a DOM element describing this metadata.

property attributes

property data

property dtype
The NumPy dtype of the current dimensional metadata object, as specified by its
values.

property long_name
The CF Metadata long name for the object.

property metadata

property ndim
Return the number of dimensions of the current dimensional metadata object.

314 Chapter 27. Iris API

Iris, Release 3.0.1

property shape
The fundamental shape of the metadata, expressed as a tuple.

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

A CF auxiliary coordinate.

Note: There are currently no specific properties of AuxCoord, everything is inherited from Coord.

class iris.coords.AuxCoord(*args, **kwargs)
Constructs a single coordinate.

Args:

• points: The values (or value in the case of a scalar coordinate) for each cell of the
coordinate.

Kwargs:

• standard_name: CF standard name of the coordinate.

• long_name: Descriptive name of the coordinate.

• var_name: The netCDF variable name for the coordinate.

• units The Unit of the coordinate’s values. Can be a string, which will be con-
verted to a Unit object.

• bounds An array of values describing the bounds of each cell. Given n bounds
for each cell, the shape of the bounds array should be points.shape + (n,). For
example, a 1d coordinate with 100 points and two bounds per cell would have a
bounds array of shape (100, 2) Note if the data is a climatology, climatological
should be set.

• attributes A dictionary containing other cf and user-defined attributes.

• coord_system A CoordSystem representing the coordinate system of the coor-
dinate, e.g. a GeogCS for a longitude Coord.

• climatological (bool): When True: the coordinate is a NetCDF climatological
time axis. When True: saving in NetCDF will give the coordinate variable a
‘climatology’ attribute and will create a boundary variable called ‘<coordinate-
name>_climatology’ in place of a standard bounds attribute and bounds vari-
able. Will set to True when a climatological time axis is loaded from NetCDF.
Always False if no bounds exist.

__binary_operator__(other, mode_constant)
Common code which is called by add, sub, mul and div

Mode constant is one of ADD, SUB, MUL, DIV, RDIV

Note: The unit is not changed when doing scalar operations on a metadata object.
This means that a metadata object which represents “10 meters” when multiplied

27.7. iris.coords 315

Iris, Release 3.0.1

by a scalar i.e. “1000” would result in a metadata object of “10000 meters”. An
alternative approach could be taken to multiply the unit by 1000 and the resultant
metadata object would represent “10 kilometers”.

__getitem__(keys)
Returns a new dimensional metadata whose values are obtained by conventional
array indexing.

Note: Indexing of a circular coordinate results in a non-circular coordinate if the
overall shape of the coordinate changes after indexing.

cell(index)
Return the single Cell instance which results from slicing the points/bounds with
the given index.

cells()
Returns an iterable of Cell instances for this Coord.

For example:

for cell in self.cells():
...

collapsed(dims_to_collapse=None)
Returns a copy of this coordinate, which has been collapsed along the specified
dimensions.

Replaces the points & bounds with a simple bounded region.

contiguous_bounds()
Returns the N+1 bound values for a contiguous bounded 1D coordinate of length
N, or the (N+1, M+1) bound values for a contiguous bounded 2D coordinate of
shape (N, M).

Only 1D or 2D coordinates are supported.

Note: If the coordinate has bounds, this method assumes they are contiguous.

If the coordinate is 1D and does not have bounds, this method will return bounds
positioned halfway between the coordinate’s points.

If the coordinate is 2D and does not have bounds, an error will be raised.

convert_units(unit)
Change the coordinate’s units, converting the values in its points and bounds arrays.

For example, if a coordinate’s units attribute is set to radians then:

coord.convert_units('degrees')

will change the coordinate’s units attribute to degrees and multiply each value in
points and bounds by 180.0/𝜋.

copy(points=None, bounds=None)
Returns a copy of this coordinate.

Kwargs:

316 Chapter 27. Iris API

Iris, Release 3.0.1

• points: A points array for the new coordinate. This may be a different
shape to the points of the coordinate being copied.

• bounds: A bounds array for the new coordinate. Given n bounds for each
cell, the shape of the bounds array should be points.shape + (n,). For exam-
ple, a 1d coordinate with 100 points and two bounds per cell would have a
bounds array of shape (100, 2).

Note: If the points argument is specified and bounds are not, the resulting coordi-
nate will have no bounds.

core_bounds()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

core_points()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

cube_dims(cube)
Return the cube dimensions of this Coord.

Equivalent to “cube.coord_dims(self)”.

classmethod from_coord(coord)
Create a new Coord of this type, from the given coordinate.

guess_bounds(bound_position=0.5)
Add contiguous bounds to a coordinate, calculated from its points.

Puts a cell boundary at the specified fraction between each point and the next, plus
extrapolated lowermost and uppermost bound points, so that each point lies within
a cell.

With regularly spaced points, the resulting bounds will also be regular, and all
points lie at the same position within their cell. With irregular points, the first and
last cells are given the same widths as the ones next to them.

Kwargs:
• bound_position: The desired position of the bounds relative to the position

of the points.

Note: An error is raised if the coordinate already has bounds, is not one-
dimensional, or is not monotonic.

Note: Unevenly spaced values, such from a wrapped longitude range, can produce
unexpected results : In such cases you should assign suitable values directly to the
bounds property, instead.

has_bounds()
Return a boolean indicating whether the coord has a bounds array.

has_lazy_bounds()
Return a boolean indicating whether the coord’s bounds array is a lazy dask array
or not.

27.7. iris.coords 317

Iris, Release 3.0.1

has_lazy_points()
Return a boolean indicating whether the coord’s points array is a lazy dask array or
not.

intersect(other, return_indices=False)
Returns a new coordinate from the intersection of two coordinates.

Both coordinates must be compatible as defined by is_compatible().

Kwargs:
• return_indices: If True, changes the return behaviour to return the intersec-

tion indices for the “self” coordinate.

is_compatible(other, ignore=None)
Return whether the coordinate is compatible with another.

Compatibility is determined by comparing iris.coords.Coord.name(),
iris.coords.Coord.units, iris.coords.Coord.coord_system
and iris.coords.Coord.attributes that are present in both objects.

Args:
• other: An instance of iris.coords.Coord, iris.common.

CoordMetadata or iris.common.DimCoordMetadata.
• ignore: A single attribute key or iterable of attribute keys to ignore when com-

paring the coordinates. Default is None. To ignore all attributes, set this to
other.attributes.

Returns Boolean.

is_contiguous(rtol=1e-05, atol=1e-08)
Return True if, and only if, this Coord is bounded with contiguous bounds to within
the specified relative and absolute tolerances.

1D coords are contiguous if the upper bound of a cell aligns, within a tolerance, to
the lower bound of the next cell along.

2D coords, with 4 bounds, are contiguous if the lower right corner of each cell
aligns with the lower left corner of the cell to the right of it, and the upper left
corner of each cell aligns with the lower left corner of the cell above it.

Args:
• rtol: The relative tolerance parameter (default is 1e-05).
• atol: The absolute tolerance parameter (default is 1e-08).

Returns Boolean.

is_monotonic()
Return True if, and only if, this Coord is monotonic.

lazy_bounds()
Return a lazy array representing the coord bounds.

Accessing this method will never cause the bounds values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded bounds.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array representing the coord bounds array or None if the
coord does not have bounds.

318 Chapter 27. Iris API

Iris, Release 3.0.1

lazy_points()
Return a lazy array representing the coord points.

Accessing this method will never cause the points values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded points.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array, representing the coord points array.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

nearest_neighbour_index(point)
Returns the index of the cell nearest to the given point.

Only works for one-dimensional coordinates.

For example:

>>> cube = iris.load_cube(iris.sample_data_path('ostia_
→˓monthly.nc'))
>>> cube.coord('latitude').nearest_neighbour_index(0)
9
>>> cube.coord('longitude').nearest_neighbour_index(10)
12

Note: If the coordinate contains bounds, these will be used to determine the
nearest neighbour instead of the point values.

Note: For circular coordinates, the ‘nearest’ point can wrap around to the other
end of the values.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

xml_element(doc)
Return a DOM element describing this Coord.

property attributes

27.7. iris.coords 319

Iris, Release 3.0.1

property bounds
The coordinate bounds values, as a NumPy array, or None if no bound values are
defined.

Note: The shape of the bound array should be: points.shape +
(n_bounds,).

property bounds_dtype
The NumPy dtype of the coord’s bounds. Will be None if the coord does not have
bounds.

property climatological
A boolean that controls whether the coordinate is a climatological time axis, in
which case the bounds represent a climatological period rather than a normal pe-
riod.

Always reads as False if there are no bounds. On set, the input value is cast to a
boolean, exceptions raised if units are not time units or if there are no bounds.

property coord_system
The coordinate-system of the coordinate.

property dtype
The NumPy dtype of the current dimensional metadata object, as specified by its
values.

property long_name
The CF Metadata long name for the object.

property metadata

property nbounds
Return the number of bounds that this coordinate has (0 for no bounds).

property ndim
Return the number of dimensions of the current dimensional metadata object.

property points
The coordinate points values as a NumPy array.

property shape
The fundamental shape of the metadata, expressed as a tuple.

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

An immutable representation of a single cell of a coordinate, including the sample point and/or boundary
position.

Notes on cell comparison:

Cells are compared in two ways, depending on whether they are compared to another Cell, or to a num-
ber/string.

320 Chapter 27. Iris API

Iris, Release 3.0.1

Cell-Cell comparison is defined to produce a strict ordering. If two cells are not exactly equal (i.e. includ-
ing whether they both define bounds or not) then they will have a consistent relative order.

Cell-number and Cell-string comparison is defined to support Constraint matching. The number/string
will equal the Cell if, and only if, it is within the Cell (including on the boundary). The relative compar-
isons (lt, le, ..) are defined to be consistent with this interpretation. So for a given value n and Cell cell,
only one of the following can be true:

n < cell
n == cell
n > cell

Similarly, n <= cell implies either n < cell or n == cell. And n >= cell implies either n > cell or n ==
cell.

class iris.coords.Cell(point=None, bound=None)
Construct a Cell from point or point-and-bound information.

__common_cmp__(other, operator_method)
Common method called by the rich comparison operators. The method of checking
equality depends on the type of the object to be compared.

Cell vs Cell comparison is used to define a strict order. Non-Cell vs Cell compari-
son is used to define Constraint matching.

__eq__(other)
Compares Cell equality depending on the type of the object to be compared.

static __new__(cls, point=None, bound=None)
Construct a Cell from point or point-and-bound information.

contains_point(point)
For a bounded cell, returns whether the given point lies within the bounds.

Note: The test carried out is equivalent to min(bound) <= point <= max(bound).

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property bound
Alias for field number 1

property point
Alias for field number 0

A CF Cell Measure, providing area or volume properties of a cell where these cannot be inferred from the
Coordinates and Coordinate Reference System.

27.7. iris.coords 321

Iris, Release 3.0.1

class iris.coords.CellMeasure(data, standard_name=None,
long_name=None, var_name=None,
units=None, attributes=None, mea-
sure=None)

Constructs a single cell measure.

Args:

• data: The values of the measure for each cell. Either a ‘real’ array (numpy.
ndarray) or a ‘lazy’ array (dask.array.Array).

Kwargs:

• standard_name: CF standard name of the coordinate.

• long_name: Descriptive name of the coordinate.

• var_name: The netCDF variable name for the coordinate.

• units The Unit of the coordinate’s values. Can be a string, which will be con-
verted to a Unit object.

• attributes A dictionary containing other CF and user-defined attributes.

• measure A string describing the type of measure. Supported values are ‘area’ and
‘volume’. The default is ‘area’.

__binary_operator__(other, mode_constant)
Common code which is called by add, sub, mul and div

Mode constant is one of ADD, SUB, MUL, DIV, RDIV

Note: The unit is not changed when doing scalar operations on a metadata object.
This means that a metadata object which represents “10 meters” when multiplied
by a scalar i.e. “1000” would result in a metadata object of “10000 meters”. An
alternative approach could be taken to multiply the unit by 1000 and the resultant
metadata object would represent “10 kilometers”.

__getitem__(keys)
Returns a new dimensional metadata whose values are obtained by conventional
array indexing.

Note: Indexing of a circular coordinate results in a non-circular coordinate if the
overall shape of the coordinate changes after indexing.

convert_units(unit)
Change the units, converting the values of the metadata.

copy(values=None)
Returns a copy of this dimensional metadata object.

Kwargs:
• values An array of values for the new dimensional metadata object. This may

be a different shape to the original values array being copied.

core_data()
The data array at the core of this ancillary variable, which may be a NumPy array
or a dask array.

322 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

cube_dims(cube)
Return the cube dimensions of this CellMeasure.

Equivalent to “cube.cell_measure_dims(self)”.

has_bounds()
Return a boolean indicating whether the current dimensional metadata object has a
bounds array.

has_lazy_data()
Return a boolean indicating whether the ancillary variable’s data array is a lazy
dask array or not.

is_compatible(other, ignore=None)
Return whether the current dimensional metadata object is compatible with an-
other.

lazy_data()
Return a lazy array representing the ancillary variable’s data.

Accessing this method will never cause the data values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the ancillary
variable to have loaded data.

If the data have already been loaded for the ancillary variable, the returned Array
will be a new lazy array wrapper.

Returns A lazy array, representing the ancillary variable data array.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

xml_element(doc)
Return a DOM element describing this metadata.

property attributes

property data

property dtype
The NumPy dtype of the current dimensional metadata object, as specified by its
values.

property long_name
The CF Metadata long name for the object.

27.7. iris.coords 323

Iris, Release 3.0.1

property measure
String naming the measure type.

property metadata

property ndim
Return the number of dimensions of the current dimensional metadata object.

property shape
The fundamental shape of the metadata, expressed as a tuple.

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Represents a sub-cell pre-processing operation.

class iris.coords.CellMethod(method, coords=None, intervals=None,
comments=None)

Args:

• method: The name of the operation.

Kwargs:

• coords: A single instance or sequence of Coord instances or coordinate names.

• intervals: A single string, or a sequence strings, describing the intervals within
the cell method.

• comments: A single string, or a sequence strings, containing any additional com-
ments.

__str__()
Return a custom string representation of CellMethod

xml_element(doc)
Return a dom element describing itself

comments = None
Additional comments.

coord_names = None
The tuple of coordinate names over which the operation was applied.

intervals = None
A description of the original intervals over which the operation was applied.

method = None
The name of the operation that was applied. e.g. “mean”, “max”, etc.

Superclass for coordinates.

324 Chapter 27. Iris API

Iris, Release 3.0.1

class iris.coords.Coord(points, standard_name=None, long_name=None,
var_name=None, units=None, bounds=None, at-
tributes=None, coord_system=None, climatologi-
cal=False)

Constructs a single coordinate.

Args:

• points: The values (or value in the case of a scalar coordinate) for each cell of the
coordinate.

Kwargs:

• standard_name: CF standard name of the coordinate.

• long_name: Descriptive name of the coordinate.

• var_name: The netCDF variable name for the coordinate.

• units The Unit of the coordinate’s values. Can be a string, which will be con-
verted to a Unit object.

• bounds An array of values describing the bounds of each cell. Given n bounds
for each cell, the shape of the bounds array should be points.shape + (n,). For
example, a 1d coordinate with 100 points and two bounds per cell would have a
bounds array of shape (100, 2) Note if the data is a climatology, climatological
should be set.

• attributes A dictionary containing other cf and user-defined attributes.

• coord_system A CoordSystem representing the coordinate system of the coor-
dinate, e.g. a GeogCS for a longitude Coord.

• climatological (bool): When True: the coordinate is a NetCDF climatological
time axis. When True: saving in NetCDF will give the coordinate variable a
‘climatology’ attribute and will create a boundary variable called ‘<coordinate-
name>_climatology’ in place of a standard bounds attribute and bounds vari-
able. Will set to True when a climatological time axis is loaded from NetCDF.
Always False if no bounds exist.

__binary_operator__(other, mode_constant)
Common code which is called by add, sub, mul and div

Mode constant is one of ADD, SUB, MUL, DIV, RDIV

Note: The unit is not changed when doing scalar operations on a metadata object.
This means that a metadata object which represents “10 meters” when multiplied
by a scalar i.e. “1000” would result in a metadata object of “10000 meters”. An
alternative approach could be taken to multiply the unit by 1000 and the resultant
metadata object would represent “10 kilometers”.

__getitem__(keys)
Returns a new dimensional metadata whose values are obtained by conventional
array indexing.

Note: Indexing of a circular coordinate results in a non-circular coordinate if the
overall shape of the coordinate changes after indexing.

27.7. iris.coords 325

Iris, Release 3.0.1

cell(index)
Return the single Cell instance which results from slicing the points/bounds with
the given index.

cells()
Returns an iterable of Cell instances for this Coord.

For example:

for cell in self.cells():
...

collapsed(dims_to_collapse=None)
Returns a copy of this coordinate, which has been collapsed along the specified
dimensions.

Replaces the points & bounds with a simple bounded region.

contiguous_bounds()
Returns the N+1 bound values for a contiguous bounded 1D coordinate of length
N, or the (N+1, M+1) bound values for a contiguous bounded 2D coordinate of
shape (N, M).

Only 1D or 2D coordinates are supported.

Note: If the coordinate has bounds, this method assumes they are contiguous.

If the coordinate is 1D and does not have bounds, this method will return bounds
positioned halfway between the coordinate’s points.

If the coordinate is 2D and does not have bounds, an error will be raised.

convert_units(unit)
Change the coordinate’s units, converting the values in its points and bounds arrays.

For example, if a coordinate’s units attribute is set to radians then:

coord.convert_units('degrees')

will change the coordinate’s units attribute to degrees and multiply each value in
points and bounds by 180.0/𝜋.

copy(points=None, bounds=None)
Returns a copy of this coordinate.

Kwargs:
• points: A points array for the new coordinate. This may be a different

shape to the points of the coordinate being copied.
• bounds: A bounds array for the new coordinate. Given n bounds for each

cell, the shape of the bounds array should be points.shape + (n,). For exam-
ple, a 1d coordinate with 100 points and two bounds per cell would have a
bounds array of shape (100, 2).

Note: If the points argument is specified and bounds are not, the resulting coordi-
nate will have no bounds.

326 Chapter 27. Iris API

Iris, Release 3.0.1

core_bounds()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

core_points()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

cube_dims(cube)
Return the cube dimensions of this Coord.

Equivalent to “cube.coord_dims(self)”.

classmethod from_coord(coord)
Create a new Coord of this type, from the given coordinate.

guess_bounds(bound_position=0.5)
Add contiguous bounds to a coordinate, calculated from its points.

Puts a cell boundary at the specified fraction between each point and the next, plus
extrapolated lowermost and uppermost bound points, so that each point lies within
a cell.

With regularly spaced points, the resulting bounds will also be regular, and all
points lie at the same position within their cell. With irregular points, the first and
last cells are given the same widths as the ones next to them.

Kwargs:
• bound_position: The desired position of the bounds relative to the position

of the points.

Note: An error is raised if the coordinate already has bounds, is not one-
dimensional, or is not monotonic.

Note: Unevenly spaced values, such from a wrapped longitude range, can produce
unexpected results : In such cases you should assign suitable values directly to the
bounds property, instead.

has_bounds()
Return a boolean indicating whether the coord has a bounds array.

has_lazy_bounds()
Return a boolean indicating whether the coord’s bounds array is a lazy dask array
or not.

has_lazy_points()
Return a boolean indicating whether the coord’s points array is a lazy dask array or
not.

intersect(other, return_indices=False)
Returns a new coordinate from the intersection of two coordinates.

Both coordinates must be compatible as defined by is_compatible().

Kwargs:
• return_indices: If True, changes the return behaviour to return the intersec-

tion indices for the “self” coordinate.

27.7. iris.coords 327

Iris, Release 3.0.1

is_compatible(other, ignore=None)
Return whether the coordinate is compatible with another.

Compatibility is determined by comparing iris.coords.Coord.name(),
iris.coords.Coord.units, iris.coords.Coord.coord_system
and iris.coords.Coord.attributes that are present in both objects.

Args:
• other: An instance of iris.coords.Coord, iris.common.

CoordMetadata or iris.common.DimCoordMetadata.
• ignore: A single attribute key or iterable of attribute keys to ignore when com-

paring the coordinates. Default is None. To ignore all attributes, set this to
other.attributes.

Returns Boolean.

is_contiguous(rtol=1e-05, atol=1e-08)
Return True if, and only if, this Coord is bounded with contiguous bounds to within
the specified relative and absolute tolerances.

1D coords are contiguous if the upper bound of a cell aligns, within a tolerance, to
the lower bound of the next cell along.

2D coords, with 4 bounds, are contiguous if the lower right corner of each cell
aligns with the lower left corner of the cell to the right of it, and the upper left
corner of each cell aligns with the lower left corner of the cell above it.

Args:
• rtol: The relative tolerance parameter (default is 1e-05).
• atol: The absolute tolerance parameter (default is 1e-08).

Returns Boolean.

is_monotonic()
Return True if, and only if, this Coord is monotonic.

lazy_bounds()
Return a lazy array representing the coord bounds.

Accessing this method will never cause the bounds values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded bounds.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array representing the coord bounds array or None if the
coord does not have bounds.

lazy_points()
Return a lazy array representing the coord points.

Accessing this method will never cause the points values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded points.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array, representing the coord points array.

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

328 Chapter 27. Iris API

Iris, Release 3.0.1

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

nearest_neighbour_index(point)
Returns the index of the cell nearest to the given point.

Only works for one-dimensional coordinates.

For example:

>>> cube = iris.load_cube(iris.sample_data_path('ostia_
→˓monthly.nc'))
>>> cube.coord('latitude').nearest_neighbour_index(0)
9
>>> cube.coord('longitude').nearest_neighbour_index(10)
12

Note: If the coordinate contains bounds, these will be used to determine the
nearest neighbour instead of the point values.

Note: For circular coordinates, the ‘nearest’ point can wrap around to the other
end of the values.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

xml_element(doc)
Return a DOM element describing this Coord.

property attributes

property bounds
The coordinate bounds values, as a NumPy array, or None if no bound values are
defined.

Note: The shape of the bound array should be: points.shape +
(n_bounds,).

property bounds_dtype
The NumPy dtype of the coord’s bounds. Will be None if the coord does not have
bounds.

27.7. iris.coords 329

Iris, Release 3.0.1

property climatological
A boolean that controls whether the coordinate is a climatological time axis, in
which case the bounds represent a climatological period rather than a normal pe-
riod.

Always reads as False if there are no bounds. On set, the input value is cast to a
boolean, exceptions raised if units are not time units or if there are no bounds.

property coord_system
Relevant coordinate system (if any).

property dtype
The NumPy dtype of the current dimensional metadata object, as specified by its
values.

property long_name
The CF Metadata long name for the object.

property metadata

property nbounds
Return the number of bounds that this coordinate has (0 for no bounds).

property ndim
Return the number of dimensions of the current dimensional metadata object.

property points
The coordinate points values as a NumPy array.

property shape
The fundamental shape of the metadata, expressed as a tuple.

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

Defines a range of values for a coordinate.

class iris.coords.CoordExtent(name_or_coord, minimum, max-
imum, min_inclusive=True,
max_inclusive=True)

Create a CoordExtent for the specified coordinate and range of values.

Args:

• name_or_coord Either a coordinate name or a coordinate, as defined in iris.
cube.Cube.coords().

• minimum The minimum value of the range to select.

• maximum The maximum value of the range to select.

Kwargs:

• min_inclusive If True, coordinate values equal to minimum will be included in the
selection. Default is True.

330 Chapter 27. Iris API

Iris, Release 3.0.1

• max_inclusive If True, coordinate values equal to maximum will be included in
the selection. Default is True.

static __new__(cls, name_or_coord, minimum, maximum,
min_inclusive=True, max_inclusive=True)

Create a CoordExtent for the specified coordinate and range of values.

Args:
• name_or_coord Either a coordinate name or a coordinate, as defined in

iris.cube.Cube.coords().
• minimum The minimum value of the range to select.
• maximum The maximum value of the range to select.

Kwargs:
• min_inclusive If True, coordinate values equal to minimum will be included

in the selection. Default is True.
• max_inclusive If True, coordinate values equal to maximum will be included

in the selection. Default is True.

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property max_inclusive
Alias for field number 4

property maximum
Alias for field number 2

property min_inclusive
Alias for field number 3

property minimum
Alias for field number 1

property name_or_coord
Alias for field number 0

A coordinate that is 1D, numeric, and strictly monotonic.

class iris.coords.DimCoord(points, standard_name=None,
long_name=None, var_name=None,
units=None, bounds=None, attributes=None,
coord_system=None, circular=False, climato-
logical=False)

Create a 1D, numeric, and strictly monotonic Coord with read-only points and bounds.

Args:

• points: 1D numpy array-like of values (or single value in the case of a scalar coor-
dinate) for each cell of the coordinate. The values must be strictly monotonic
and masked values are not allowed.

Kwargs:

• standard_name: CF standard name of the coordinate.

• long_name: Descriptive name of the coordinate.

27.7. iris.coords 331

Iris, Release 3.0.1

• var_name: The netCDF variable name for the coordinate.

• units: The Unit of the coordinate’s values. Can be a string, which will be con-
verted to a Unit object.

• bounds: An array of values describing the bounds of each cell. Given n bounds
and m cells, the shape of the bounds array should be (m, n). For each bound,
the values must be strictly monotonic along the cells, and the direction of
monotonicity must be consistent across the bounds. For example, a DimCoord
with 100 points and two bounds per cell would have a bounds array of shape
(100, 2), and the slices bounds[:, 0] and bounds[:, 1] would be
monotonic in the same direction. Masked values are not allowed. Note if the
data is a climatology, climatological should be set.

• attributes: A dictionary containing other cf and user-defined attributes.

• coord_system: A CoordSystem representing the coordinate system of the co-
ordinate, e.g. a GeogCS for a longitude Coord.

• circular (bool): Whether the coordinate wraps by the modulus i.e., the longitude
coordinate wraps around the full great circle.

• climatological (bool): When True: the coordinate is a NetCDF climatological
time axis. When True: saving in NetCDF will give the coordinate variable a
‘climatology’ attribute and will create a boundary variable called ‘<coordinate-
name>_climatology’ in place of a standard bounds attribute and bounds vari-
able. Will set to True when a climatological time axis is loaded from NetCDF.
Always False if no bounds exist.

__binary_operator__(other, mode_constant)
Common code which is called by add, sub, mul and div

Mode constant is one of ADD, SUB, MUL, DIV, RDIV

Note: The unit is not changed when doing scalar operations on a metadata object.
This means that a metadata object which represents “10 meters” when multiplied
by a scalar i.e. “1000” would result in a metadata object of “10000 meters”. An
alternative approach could be taken to multiply the unit by 1000 and the resultant
metadata object would represent “10 kilometers”.

__deepcopy__()→ Deep copy of coordinate.
Used if copy.deepcopy is called on a coordinate.

cell(index)
Return the single Cell instance which results from slicing the points/bounds with
the given index.

cells()
Returns an iterable of Cell instances for this Coord.

For example:

for cell in self.cells():
...

collapsed(dims_to_collapse=None)
Returns a copy of this coordinate, which has been collapsed along the specified
dimensions.

332 Chapter 27. Iris API

Iris, Release 3.0.1

Replaces the points & bounds with a simple bounded region.

contiguous_bounds()
Returns the N+1 bound values for a contiguous bounded 1D coordinate of length
N, or the (N+1, M+1) bound values for a contiguous bounded 2D coordinate of
shape (N, M).

Only 1D or 2D coordinates are supported.

Note: If the coordinate has bounds, this method assumes they are contiguous.

If the coordinate is 1D and does not have bounds, this method will return bounds
positioned halfway between the coordinate’s points.

If the coordinate is 2D and does not have bounds, an error will be raised.

convert_units(unit)
Change the coordinate’s units, converting the values in its points and bounds arrays.

For example, if a coordinate’s units attribute is set to radians then:

coord.convert_units('degrees')

will change the coordinate’s units attribute to degrees and multiply each value in
points and bounds by 180.0/𝜋.

copy(points=None, bounds=None)
Returns a copy of this coordinate.

Kwargs:
• points: A points array for the new coordinate. This may be a different

shape to the points of the coordinate being copied.
• bounds: A bounds array for the new coordinate. Given n bounds for each

cell, the shape of the bounds array should be points.shape + (n,). For exam-
ple, a 1d coordinate with 100 points and two bounds per cell would have a
bounds array of shape (100, 2).

Note: If the points argument is specified and bounds are not, the resulting coordi-
nate will have no bounds.

core_bounds()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

core_points()
The points array at the core of this coord, which may be a NumPy array or a dask
array.

cube_dims(cube)
Return the cube dimensions of this Coord.

Equivalent to “cube.coord_dims(self)”.

classmethod from_coord(coord)
Create a new Coord of this type, from the given coordinate.

27.7. iris.coords 333

Iris, Release 3.0.1

classmethod from_regular(zeroth, step, count, standard_name=None,
long_name=None, var_name=None,
units=None, attributes=None, co-
ord_system=None, circular=False, cli-
matological=False, with_bounds=False)

Create a DimCoord with regularly spaced points, and optionally bounds.

The majority of the arguments are defined as for Coord.__init__(), but those
which differ are defined below.

Args:
• zeroth: The value prior to the first point value.
• step: The numeric difference between successive point values.
• count: The number of point values.

Kwargs:
• with_bounds: If True, the resulting DimCoord will possess bound values

which are equally spaced around the points. Otherwise no bounds values
will be defined. Defaults to False.

guess_bounds(bound_position=0.5)
Add contiguous bounds to a coordinate, calculated from its points.

Puts a cell boundary at the specified fraction between each point and the next, plus
extrapolated lowermost and uppermost bound points, so that each point lies within
a cell.

With regularly spaced points, the resulting bounds will also be regular, and all
points lie at the same position within their cell. With irregular points, the first and
last cells are given the same widths as the ones next to them.

Kwargs:
• bound_position: The desired position of the bounds relative to the position

of the points.

Note: An error is raised if the coordinate already has bounds, is not one-
dimensional, or is not monotonic.

Note: Unevenly spaced values, such from a wrapped longitude range, can produce
unexpected results : In such cases you should assign suitable values directly to the
bounds property, instead.

has_bounds()
Return a boolean indicating whether the coord has a bounds array.

has_lazy_bounds()
Return a boolean indicating whether the coord’s bounds array is a lazy dask array
or not.

has_lazy_points()
Return a boolean indicating whether the coord’s points array is a lazy dask array or
not.

intersect(other, return_indices=False)
Returns a new coordinate from the intersection of two coordinates.

Both coordinates must be compatible as defined by is_compatible().

Kwargs:

334 Chapter 27. Iris API

Iris, Release 3.0.1

• return_indices: If True, changes the return behaviour to return the intersec-
tion indices for the “self” coordinate.

is_compatible(other, ignore=None)
Return whether the coordinate is compatible with another.

Compatibility is determined by comparing iris.coords.Coord.name(),
iris.coords.Coord.units, iris.coords.Coord.coord_system
and iris.coords.Coord.attributes that are present in both objects.

Args:
• other: An instance of iris.coords.Coord, iris.common.

CoordMetadata or iris.common.DimCoordMetadata.
• ignore: A single attribute key or iterable of attribute keys to ignore when com-

paring the coordinates. Default is None. To ignore all attributes, set this to
other.attributes.

Returns Boolean.

is_contiguous(rtol=1e-05, atol=1e-08)
Return True if, and only if, this Coord is bounded with contiguous bounds to within
the specified relative and absolute tolerances.

1D coords are contiguous if the upper bound of a cell aligns, within a tolerance, to
the lower bound of the next cell along.

2D coords, with 4 bounds, are contiguous if the lower right corner of each cell
aligns with the lower left corner of the cell to the right of it, and the upper left
corner of each cell aligns with the lower left corner of the cell above it.

Args:
• rtol: The relative tolerance parameter (default is 1e-05).
• atol: The absolute tolerance parameter (default is 1e-08).

Returns Boolean.

is_monotonic()
Return True if, and only if, this Coord is monotonic.

lazy_bounds()
Return a lazy array representing the coord bounds.

Accessing this method will never cause the bounds values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded bounds.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array representing the coord bounds array or None if the
coord does not have bounds.

lazy_points()
Return a lazy array representing the coord points.

Accessing this method will never cause the points values to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the coord to have
loaded points.

If the data have already been loaded for the coord, the returned Array will be a new
lazy array wrapper.

Returns A lazy array, representing the coord points array.

27.7. iris.coords 335

Iris, Release 3.0.1

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

nearest_neighbour_index(point)
Returns the index of the cell nearest to the given point.

Only works for one-dimensional coordinates.

For example:

>>> cube = iris.load_cube(iris.sample_data_path('ostia_
→˓monthly.nc'))
>>> cube.coord('latitude').nearest_neighbour_index(0)
9
>>> cube.coord('longitude').nearest_neighbour_index(10)
12

Note: If the coordinate contains bounds, these will be used to determine the
nearest neighbour instead of the point values.

Note: For circular coordinates, the ‘nearest’ point can wrap around to the other
end of the values.

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

xml_element(doc)
Return DOM element describing this iris.coords.DimCoord.

property attributes

property bounds
The coordinate bounds values, as a NumPy array, or None if no bound values are
defined.

Note: The shape of the bound array should be: points.shape +
(n_bounds,).

336 Chapter 27. Iris API

Iris, Release 3.0.1

property bounds_dtype
The NumPy dtype of the coord’s bounds. Will be None if the coord does not have
bounds.

property circular
Whether the coordinate wraps by coord.units.modulus.

property climatological
A boolean that controls whether the coordinate is a climatological time axis, in
which case the bounds represent a climatological period rather than a normal pe-
riod.

Always reads as False if there are no bounds. On set, the input value is cast to a
boolean, exceptions raised if units are not time units or if there are no bounds.

property coord_system
The coordinate-system of the coordinate.

property dtype
The NumPy dtype of the current dimensional metadata object, as specified by its
values.

property long_name
The CF Metadata long name for the object.

property metadata

property nbounds
Return the number of bounds that this coordinate has (0 for no bounds).

property ndim
Return the number of dimensions of the current dimensional metadata object.

property points
The coordinate points values as a NumPy array.

property shape
The fundamental shape of the metadata, expressed as a tuple.

property standard_name
The CF Metadata standard name for the object.

property units
The S.I. unit of the object.

property var_name
The NetCDF variable name for the object.

27.8 iris.cube

Classes for representing multi-dimensional data with metadata.

In this module:

• Cube

• CubeList

A single Iris cube of data and metadata.

Typically obtained from iris.load(), iris.load_cube(), iris.load_cubes(), or from the
manipulation of existing cubes.

27.8. iris.cube 337

Iris, Release 3.0.1

For example:

>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> print(cube)
air_temperature / (K) (latitude: 73; longitude: 96)

Dimension coordinates:
latitude x -
longitude - x

Scalar coordinates:
forecast_period: 6477 hours, bound=(-28083.0, 6477.0) hours
forecast_reference_time: 1998-03-01 03:00:00
pressure: 1000.0 hPa
time: 1998-12-01 00:00:00, bound=(1994-12-01 00:00:00, 1998-12-01

→˓00:00:00)
Attributes:

STASH: m01s16i203
source: Data from Met Office Unified Model

Cell methods:
mean within years: time
mean over years: time

See the user guide for more information.

class iris.cube.Cube(data, standard_name=None, long_name=None,
var_name=None, units=None, attributes=None,
cell_methods=None, dim_coords_and_dims=None,
aux_coords_and_dims=None, aux_factories=None,
cell_measures_and_dims=None, ancil-
lary_variables_and_dims=None)

Creates a cube with data and optional metadata.

Not typically used - normally cubes are obtained by loading data (e.g. iris.load())
or from manipulating existing cubes.

Args:

• data This object defines the shape of the cube and the phenomenon value in each
cell.

data can be a dask array, a NumPy array, a NumPy array subclass (such
as numpy.ma.MaskedArray), or array_like (as described in numpy.
asarray()).

See Cube.data.

Kwargs:

• standard_name The standard name for the Cube’s data.

• long_name An unconstrained description of the cube.

• var_name The netCDF variable name for the cube.

• units The unit of the cube, e.g. "m s-1" or "kelvin".

• attributes A dictionary of cube attributes

• cell_methods A tuple of CellMethod objects, generally set by Iris, e.g.
(CellMethod("mean", coords='latitude'),).

• dim_coords_and_dims A list of coordinates with scalar dimension mappings, e.g
[(lat_coord, 0), (lon_coord, 1)].

338 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/maskedarray.baseclass.html#numpy.ma.MaskedArray
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray

Iris, Release 3.0.1

• aux_coords_and_dims A list of coordinates with dimension mappings, e.g
[(lat_coord, 0), (lon_coord, (0, 1))]. See also Cube.
add_dim_coord() and Cube.add_aux_coord().

• aux_factories A list of auxiliary coordinate factories. See iris.
aux_factory .

• cell_measures_and_dims A list of CellMeasures with dimension mappings.

• ancillary_variables_and_dims A list of AncillaryVariables with dimension map-
pings.

For example::

>>> from iris.coords import DimCoord
>>> from iris.cube import Cube
>>> latitude = DimCoord(np.linspace(-90, 90, 4),
... standard_name='latitude',
... units='degrees')
>>> longitude = DimCoord(np.linspace(45, 360, 8),
... standard_name='longitude',
... units='degrees')
>>> cube = Cube(np.zeros((4, 8), np.float32),
... dim_coords_and_dims=[(latitude, 0),
... (longitude, 1)])

__copy__()
Shallow copying is disallowed for Cubes.

__getitem__(keys)
Cube indexing (through use of square bracket notation) has been implemented at
the data level. That is, the indices provided to this method should be aligned to the
data of the cube, and thus the indices requested must be applicable directly to the
cube.data attribute. All metadata will be subsequently indexed appropriately.

add_ancillary_variable(ancillary_variable, data_dims=None)
Adds a CF ancillary variable to the cube.

Args:
• ancillary_variable The iris.coords.AncillaryVariable instance

to be added to the cube
Kwargs:

• data_dims Integer or iterable of integers giving the data dimensions spanned
by the ancillary variable.

Raises a ValueError if an ancillary variable with identical metadata already exists
on the cube.

add_aux_coord(coord, data_dims=None)
Adds a CF auxiliary coordinate to the cube.

Args:
• coord The iris.coords.DimCoord or iris.coords.AuxCoord

instance to add to the cube.
Kwargs:

• data_dims Integer or iterable of integers giving the data dimensions spanned
by the coordinate.

Raises a ValueError if a coordinate with identical metadata already exists on the
cube.

27.8. iris.cube 339

Iris, Release 3.0.1

See also Cube.remove_coord().

add_aux_factory(aux_factory)
Adds an auxiliary coordinate factory to the cube.

Args:
• aux_factory The iris.aux_factory.AuxCoordFactory instance to

add.

add_cell_measure(cell_measure, data_dims=None)
Adds a CF cell measure to the cube.

Args:
• cell_measure The iris.coords.CellMeasure instance to add to the

cube.
Kwargs:

• data_dims Integer or iterable of integers giving the data dimensions spanned
by the coordinate.

Raises a ValueError if a cell_measure with identical metadata already exists on the
cube.

See also Cube.remove_cell_measure().

add_cell_method(cell_method)
Add a CellMethod to the Cube.

add_dim_coord(dim_coord, data_dim)
Add a CF coordinate to the cube.

Args:
• dim_coord The iris.coords.DimCoord instance to add to the cube.
• data_dim Integer giving the data dimension spanned by the coordinate.

Raises a ValueError if a coordinate with identical metadata already exists on the
cube or if a coord already exists for the given dimension.

See also Cube.remove_coord().

aggregated_by(coords, aggregator, **kwargs)
Perform aggregation over the cube given one or more “group coordinates”.

A “group coordinate” is a coordinate where repeating values represent a single
group, such as a month coordinate on a daily time slice. Repeated values will form
a group even if they are not consecutive.

The group coordinates must all be over the same cube dimension. Each common
value group identified over all the group-by coordinates is collapsed using the pro-
vided aggregator.

Args:
• coords (list of coord names or iris.coords.Coord instances): One or

more coordinates over which group aggregation is to be performed.
• aggregator (iris.analysis.Aggregator): Aggregator to be applied

to each group.
Kwargs:

• kwargs: Aggregator and aggregation function keyword arguments.

Returns iris.cube.Cube.

For example:

340 Chapter 27. Iris API

Iris, Release 3.0.1

>>> import iris
>>> import iris.analysis
>>> import iris.coord_categorisation as cat
>>> fname = iris.sample_data_path('ostia_monthly.nc')
>>> cube = iris.load_cube(fname, 'surface_temperature')
>>> cat.add_year(cube, 'time', name='year')
>>> new_cube = cube.aggregated_by('year', iris.analysis.
→˓MEAN)
>>> print(new_cube)
surface_temperature / (K) (time: 5; latitude: 18;
→˓longitude: 432)

Dimension coordinates:
time x -

→˓ -
latitude - x

→˓ -
longitude - -

→˓ x
Auxiliary coordinates:

forecast_reference_time x -
→˓ -

year x -
→˓ -

Scalar coordinates:
forecast_period: 0 hours

Attributes:
Conventions: CF-1.5
STASH: m01s00i024

Cell methods:
mean: month, year
mean: year

ancillary_variable(name_or_ancillary_variable=None)
Return a single ancillary_variable given the same arguments as Cube.
ancillary_variables().

Note: If the arguments given do not result in precisely 1 ancillary_variable being
matched, an iris.exceptions.AncillaryVariableNotFoundError
is raised.

See also:

Cube.ancillary_variables() for full keyword documentation.

ancillary_variable_dims(ancillary_variable)
Returns a tuple of the data dimensions relevant to the given AncillaryVariable.

• ancillary_variable The AncillaryVariable to look for.

ancillary_variables(name_or_ancillary_variable=None)
Return a list of ancillary variable in this cube fitting the given criteria.

Kwargs:
• name_or_ancillary_variable Either

(a) a standard_name, long_name, or var_name. Defaults to value
of default (which itself defaults to unknown) as defined in iris.common.
CFVariableMixin.

27.8. iris.cube 341

Iris, Release 3.0.1

(b) a ancillary_variable instance with metadata equal to that of the desired
ancillary_variables.

See also Cube.ancillary_variable().

aux_factory(name=None, standard_name=None, long_name=None,
var_name=None)

Returns the single coordinate factory that matches the criteria, or raises an error if
not found.

Kwargs:
• name If not None, matches against factory.name().
• standard_name The CF standard name of the desired coordinate factory. If

None, does not check for standard name.
• long_name An unconstrained description of the coordinate factory. If None,

does not check for long_name.
• var_name The netCDF variable name of the desired coordinate factory. If

None, does not check for var_name.

Note: If the arguments given do not result in precisely 1 coordinate factory being
matched, an iris.exceptions.CoordinateNotFoundError is raised.

cell_measure(name_or_cell_measure=None)
Return a single cell_measure given the same arguments as Cube.
cell_measures().

Note: If the arguments given do not result in precisely 1 cell_measure being
matched, an iris.exceptions.CellMeasureNotFoundError is raised.

See also:

Cube.cell_measures() for full keyword documentation.

cell_measure_dims(cell_measure)
Returns a tuple of the data dimensions relevant to the given CellMeasure.

• cell_measure The CellMeasure to look for.

cell_measures(name_or_cell_measure=None)
Return a list of cell measures in this cube fitting the given criteria.

Kwargs:
• name_or_cell_measure Either

(a) a standard_name, long_name, or var_name. Defaults to value
of default (which itself defaults to unknown) as defined in iris.common.
CFVariableMixin.

(b) a cell_measure instance with metadata equal to that of the desired
cell_measures.

See also Cube.cell_measure().

collapsed(coords, aggregator, **kwargs)
Collapse one or more dimensions over the cube given the coordinate/s and an ag-
gregation.

Examples of aggregations that may be used include COUNT and MAX.

Weighted aggregations (iris.analysis.WeightedAggregator) may also
be supplied. These include MEAN and sum SUM .

342 Chapter 27. Iris API

Iris, Release 3.0.1

Weighted aggregations support an optional weights keyword argument. If set, this
should be supplied as an array of weights whose shape matches the cube. Values
for latitude-longitude area weights may be calculated using iris.analysis.
cartography.area_weights().

Some Iris aggregators support “lazy” evaluation, meaning that cubes resulting from
this method may represent data arrays which are not computed until the data is
requested (e.g. via cube.data or iris.save). If lazy evaluation exists for the
given aggregator it will be used wherever possible when this cube’s data is itself a
deferred array.

Args:
• coords (string, coord or a list of strings/coords): Coordinate

names/coordinates over which the cube should be collapsed.
• aggregator (iris.analysis.Aggregator): Aggregator to be applied

for collapse operation.
Kwargs:

• kwargs: Aggregation function keyword arguments.

Returns Collapsed cube.

For example:

>>> import iris
>>> import iris.analysis
>>> path = iris.sample_data_path('ostia_monthly.nc')
>>> cube = iris.load_cube(path)
>>> new_cube = cube.collapsed('longitude', iris.analysis.
→˓MEAN)
>>> print(new_cube)
surface_temperature / (K) (time: 54; latitude: 18)

Dimension coordinates:
time x -
latitude - x

Auxiliary coordinates:
forecast_reference_time x -

Scalar coordinates:
forecast_period: 0 hours
longitude: 180.0 degrees, bound=(0.0, 360.0)

→˓degrees
Attributes:

Conventions: CF-1.5
STASH: m01s00i024

Cell methods:
mean: month, year
mean: longitude

Note: Some aggregations are not commutative and hence the order of processing
is important i.e.:

tmp = cube.collapsed('realization', iris.analysis.VARIANCE)
result = tmp.collapsed('height', iris.analysis.VARIANCE)

is not necessarily the same result as:

tmp = cube.collapsed('height', iris.analysis.VARIANCE)
result2 = tmp.collapsed('realization', iris.analysis.
→˓VARIANCE) (continues on next page)

27.8. iris.cube 343

Iris, Release 3.0.1

(continued from previous page)

Conversely operations which operate on more than one coordinate at the same time
are commutative as they are combined internally into a single operation. Hence the
order of the coordinates supplied in the list does not matter:

cube.collapsed(['longitude', 'latitude'],
iris.analysis.VARIANCE)

is the same (apart from the logically equivalent cell methods that may be created
etc.) as:

cube.collapsed(['latitude', 'longitude'],
iris.analysis.VARIANCE)

convert_units(unit)
Change the cube’s units, converting the values in the data array.

For example, if a cube’s units are kelvin then:

cube.convert_units('celsius')

will change the cube’s units attribute to celsius and subtract 273.15 from each
value in data.

This operation preserves lazy data.

coord(name_or_coord=None, standard_name=None, long_name=None,
var_name=None, attributes=None, axis=None, con-
tains_dimension=None, dimensions=None, coord_system=None,
dim_coords=None)

Return a single coord given the same arguments as Cube.coords().

Note: If the arguments given do not result in precisely 1 coordinate being matched,
an iris.exceptions.CoordinateNotFoundError is raised.

See also:

Cube.coords() for full keyword documentation.

coord_dims(coord)
Returns a tuple of the data dimensions relevant to the given coordinate.

When searching for the given coordinate in the cube the comparison is made using
coordinate metadata equality. Hence the given coordinate instance need not exist
on the cube, and may contain different coordinate values.

Args:
• coord (string or coord) The (name of the) coord to look for.

coord_system(spec=None)
Find the coordinate system of the given type.

If no target coordinate system is provided then find any available coordinate sys-
tem.

Kwargs:

344 Chapter 27. Iris API

Iris, Release 3.0.1

• spec: The the name or type of a coordinate system subclass. E.g.

cube.coord_system("GeogCS")
cube.coord_system(iris.coord_systems.GeogCS)

If spec is provided as a type it can be a superclass of any coordinate system
found.

If spec is None, then find any available coordinate systems within the
iris.cube.Cube.

Returns The iris.coord_systems.CoordSystem or None.

coords(name_or_coord=None, standard_name=None, long_name=None,
var_name=None, attributes=None, axis=None, con-
tains_dimension=None, dimensions=None, coord_system=None,
dim_coords=None)

Return a list of coordinates in this cube fitting the given criteria.

Kwargs:
• name_or_coord Either

(a) a standard_name, long_name, or var_name. Defaults to value
of default (which itself defaults to unknown) as defined in iris.common.
CFVariableMixin.

(b) a coordinate instance with metadata equal to that of
the desired coordinates. Accepts either a iris.coords.
DimCoord, iris.coords.AuxCoord, iris.aux_factory.
AuxCoordFactory , iris.common.CoordMetadata or iris.
common.DimCoordMetadata.

• standard_name The CF standard name of the desired coordinate. If None,
does not check for standard name.

• long_name An unconstrained description of the coordinate. If None, does not
check for long_name.

• var_name The netCDF variable name of the desired coordinate. If None,
does not check for var_name.

• attributes A dictionary of attributes desired on the coordinates. If None, does
not check for attributes.

• axis The desired coordinate axis, see iris.util.
guess_coord_axis(). If None, does not check for axis. Accepts the
values ‘X’, ‘Y’, ‘Z’ and ‘T’ (case-insensitive).

• contains_dimension The desired coordinate contains the data dimension. If
None, does not check for the dimension.

• dimensions The exact data dimensions of the desired coordinate. Coordinates
with no data dimension can be found with an empty tuple or list (i.e. () or
[]). If None, does not check for dimensions.

• coord_system Whether the desired coordinates have coordinate systems
equal to the given coordinate system. If None, no check is done.

• dim_coords Set to True to only return coordinates that are the cube’s dimen-
sion coordinates. Set to False to only return coordinates that are the cube’s
auxiliary and derived coordinates. If None, returns all coordinates.

See also Cube.coord().

copy(data=None)
Returns a deep copy of this cube.

Kwargs:
• data: Replace the data of the cube copy with provided data payload.

27.8. iris.cube 345

Iris, Release 3.0.1

Returns A copy instance of the Cube.

core_data()
Retrieve the data array of this Cube in its current state, which will either be real or
lazy.

If this Cube has lazy data, accessing its data array via this method will not realise
the data array. This means you can perform operations using this method that work
equivalently on real or lazy data, and will maintain lazy data if present.

extract(constraint)
Filter the cube by the given constraint using iris.Constraint.extract()
method.

has_lazy_data()
Details whether this Cube has lazy data.

Returns Boolean.

interpolate(sample_points, scheme, collapse_scalar=True)
Interpolate from this Cube to the given sample points using the given interpolation
scheme.

Args:
• sample_points: A sequence of (coordinate, points) pairs over which to inter-

polate. The values for coordinates that correspond to dates or times may
optionally be supplied as datetime.datetime or cftime.datetime instances.

• scheme: The type of interpolation to use to interpolate from this Cube to the
given sample points. The interpolation schemes currently available in Iris
are:
– iris.analysis.Linear, and
– iris.analysis.Nearest.

Kwargs:
• collapse_scalar: Whether to collapse the dimension of scalar sample points

in the resulting cube. Default is True.

Returns A cube interpolated at the given sample points. If col-
lapse_scalar is True then the dimensionality of the cube will be the
number of original cube dimensions minus the number of scalar coordi-
nates.

For example:

>>> import datetime
>>> import iris
>>> path = iris.sample_data_path('uk_hires.pp')
>>> cube = iris.load_cube(path, 'air_potential_temperature')
>>> print(cube.summary(shorten=True))
air_potential_temperature / (K) (time: 3; model_level_
→˓number: 7; grid_latitude: 204; grid_longitude: 187)
>>> print(cube.coord('time'))
DimCoord([2009-11-19 10:00:00, 2009-11-19 11:00:00, 2009-11-
→˓19 12:00:00], standard_name='time', calendar='gregorian')
>>> print(cube.coord('time').points)
[349618. 349619. 349620.]
>>> samples = [('time', 349618.5)]
>>> result = cube.interpolate(samples, iris.analysis.
→˓Linear())
>>> print(result.summary(shorten=True))
air_potential_temperature / (K) (model_level_number: 7;
→˓grid_latitude: 204; grid_longitude: 187) (continues on next page)

346 Chapter 27. Iris API

Iris, Release 3.0.1

(continued from previous page)

>>> print(result.coord('time'))
DimCoord([2009-11-19 10:30:00], standard_name='time',
→˓calendar='gregorian')
>>> print(result.coord('time').points)
[349618.5]
>>> # For datetime-like coordinates, we can also use
>>> # datetime-like objects.
>>> samples = [('time', datetime.datetime(2009, 11, 19, 10,
→˓30))]
>>> result2 = cube.interpolate(samples, iris.analysis.
→˓Linear())
>>> print(result2.summary(shorten=True))
air_potential_temperature / (K) (model_level_number: 7;
→˓grid_latitude: 204; grid_longitude: 187)
>>> print(result2.coord('time'))
DimCoord([2009-11-19 10:30:00], standard_name='time',
→˓calendar='gregorian')
>>> print(result2.coord('time').points)
[349618.5]
>>> print(result == result2)
True

intersection(*args, **kwargs)
Return the intersection of the cube with specified coordinate ranges.

Coordinate ranges can be specified as:
(a) instances of iris.coords.CoordExtent.
(b) keyword arguments, where the keyword name specifies the name of the co-

ordinate (as defined in iris.cube.Cube.coords()) and the value de-
fines the corresponding range of coordinate values as a tuple. The tuple must
contain two, three, or four items corresponding to: (minimum, maximum,
min_inclusive, max_inclusive). Where the items are defined as:
• minimum The minimum value of the range to select.
• maximum The maximum value of the range to select.
• min_inclusive If True, coordinate values equal to minimum will be in-

cluded in the selection. Default is True.
• max_inclusive If True, coordinate values equal to maximum will be in-

cluded in the selection. Default is True.
To perform an intersection that ignores any bounds on the coordinates, set the op-
tional keyword argument ignore_bounds to True. Defaults to False.

Note: For ranges defined over “circular” coordinates (i.e. those where the units
attribute has a modulus defined) the cube will be “rolled” to fit where necessary.

Warning: Currently this routine only works with “circular” coordinates (as
defined in the previous note.)

For example:

>>> import iris
>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp
→˓'))

(continues on next page)

27.8. iris.cube 347

Iris, Release 3.0.1

(continued from previous page)

>>> print(cube.coord('longitude').points[::10])
[0. 37.49999237 74.99998474 112.49996948
→˓149.99996948
187.49995422 224.99993896 262.49993896 299.99993896

→˓337.49990845]
>>> subset = cube.intersection(longitude=(30, 50))
>>> print(subset.coord('longitude').points)
[33.74999237 37.49999237 41.24998856 44.99998856 48.
→˓74998856]
>>> subset = cube.intersection(longitude=(-10, 10))
>>> print(subset.coord('longitude').points)
[-7.50012207 -3.75012207 0. 3.75 7.5
→˓]

Returns A new Cube giving the subset of the cube which intersects with
the requested coordinate intervals.

is_compatible(other, ignore=None)
Return whether the cube is compatible with another.

Compatibility is determined by comparing iris.cube.Cube.name(),
iris.cube.Cube.units, iris.cube.Cube.cell_methods and
iris.cube.Cube.attributes that are present in both objects.

Args:
• other: An instance of iris.cube.Cube or iris.cube.

CubeMetadata.
• ignore: A single attribute key or iterable of attribute keys to ignore when

comparing the cubes. Default is None. To ignore all attributes set this to
other.attributes.

Returns Boolean.

See also:

iris.util.describe_diff()

Note: This function does not indicate whether the two cubes can be merged, in-
stead it checks only the four items quoted above for equality. Determining whether
two cubes will merge requires additional logic that is beyond the scope of this
method.

lazy_data()
Return a “lazy array” representing the Cube data. A lazy array describes an array
whose data values have not been loaded into memory from disk.

Accessing this method will never cause the Cube data to be loaded. Similarly,
calling methods on, or indexing, the returned Array will not cause the Cube data to
be loaded.

If the Cube data have already been loaded (for example by calling data()), the
returned Array will be a view of the loaded cube data represented as a lazy array
object. Note that this does _not_ make the Cube data lazy again; the Cube data
remains loaded in memory.

Returns A lazy array, representing the Cube data.

348 Chapter 27. Iris API

Iris, Release 3.0.1

name(default=None, token=False)
Returns a string name representing the identity of the metadata.

First it tries standard name, then it tries the long name, then the NetCDF variable
name, before falling-back to a default value, which itself defaults to the string
‘unknown’.

Kwargs:
• default: The fall-back string representing the default name. Defaults to the

string ‘unknown’.
• token: If True, ensures that the name returned satisfies the criteria for the

characters required by a valid NetCDF name. If it is not possible to return a
valid name, then a ValueError exception is raised. Defaults to False.

Returns String.

regrid(grid, scheme)
Regrid this Cube on to the given target grid using the given regridding scheme.

Args:
• grid: A Cube that defines the target grid.
• scheme: The type of regridding to use to regrid this cube onto the target grid.

The regridding schemes in Iris currently include:
– iris.analysis.Linear*,
– iris.analysis.Nearest*,
– iris.analysis.AreaWeighted*,
– iris.analysis.UnstructuredNearest,
– iris.analysis.PointInCell,
* Supports lazy regridding.

Returns

A cube defined with the horizontal dimensions of the target grid and the
other dimensions from this cube. The data values of this cube will be
converted to values on the new grid according to the given regridding
scheme.

The returned cube will have lazy data if the original cube has lazy data
and the regridding scheme supports lazy regridding.

Note: Both the source and target cubes must have a CoordSystem, otherwise this
function is not applicable.

remove_ancillary_variable(ancillary_variable)
Removes an ancillary variable from the cube.

Args:
• ancillary_variable (string or AncillaryVariable) The (name of the) Ancil-

laryVariable to remove from the cube.

remove_aux_factory(aux_factory)
Removes the given auxiliary coordinate factory from the cube.

remove_cell_measure(cell_measure)
Removes a cell measure from the cube.

Args:
• cell_measure (string or cell_measure) The (name of the) cell measure to re-

move from the cube. As either

27.8. iris.cube 349

Iris, Release 3.0.1

(a) a standard_name, long_name, or var_name. Defaults to value
of default (which itself defaults to unknown) as defined in iris.common.
CFVariableMixin.

(b) a cell_measure instance with metadata equal to that of the desired
cell_measures.

Note: If the argument given does not represent a valid cell_measure on the cube,
an iris.exceptions.CellMeasureNotFoundError is raised.

See also:

Cube.add_cell_measure()

remove_coord(coord)
Removes a coordinate from the cube.

Args:
• coord (string or coord) The (name of the) coordinate to remove from the

cube.
See also Cube.add_dim_coord() and Cube.add_aux_coord().

rename(name)
Changes the human-readable name.

If ‘name’ is a valid standard name it will assign it to standard_name, otherwise
it will assign it to long_name.

replace_coord(new_coord)
Replace the coordinate whose metadata matches the given coordinate.

rolling_window(coord, aggregator, window, **kwargs)
Perform rolling window aggregation on a cube given a coordinate, an aggregation
method and a window size.

Args:
• coord (string/iris.coords.Coord): The coordinate over which to per-

form the rolling window aggregation.
• aggregator (iris.analysis.Aggregator): Aggregator to be applied

to the data.
• window (int): Size of window to use.

Kwargs:
• kwargs: Aggregator and aggregation function keyword arguments. The

weights argument to the aggregator, if any, should be a 1d array with the
same length as the chosen window.

Returns iris.cube.Cube.

Note: This operation does not yet have support for lazy evaluation.

For example:

>>> import iris, iris.analysis
>>> fname = iris.sample_data_path('GloSea4',
→˓'ensemble_010.pp')
>>> air_press = iris.load_cube(fname, 'surface_
→˓temperature')

(continues on next page)

350 Chapter 27. Iris API

Iris, Release 3.0.1

(continued from previous page)

>>> print(air_press)
surface_temperature / (K) (time: 6;
→˓latitude: 145; longitude: 192)

Dimension coordinates:
time x

→˓- -
latitude -

→˓x -
longitude -

→˓- x
Auxiliary coordinates:

forecast_period x
→˓- -

Scalar coordinates:
forecast_reference_time: 2011-07-23 00:00:00
realization: 10

Attributes:
STASH: m01s00i024
source: Data from Met Office Unified Model
um_version: 7.6

Cell methods:
mean: time (1 hour)

>>> print(air_press.rolling_window('time', iris.
→˓analysis.MEAN, 3))
surface_temperature / (K) (time: 4;
→˓latitude: 145; longitude: 192)

Dimension coordinates:
time x

→˓- -
latitude -

→˓x -
longitude -

→˓- x
Auxiliary coordinates:

forecast_period x
→˓- -

Scalar coordinates:
forecast_reference_time: 2011-07-23 00:00:00
realization: 10

Attributes:
STASH: m01s00i024
source: Data from Met Office Unified Model
um_version: 7.6

Cell methods:
mean: time (1 hour)
mean: time

Notice that the forecast_period dimension now represents the 4 possible
windows of size 3 from the original cube.

slices(ref_to_slice, ordered=True)
Return an iterator of all subcubes given the coordinates or dimension indices de-
sired to be present in each subcube.

Args:
• ref_to_slice (string, coord, dimension index or a list of these): Determines

27.8. iris.cube 351

Iris, Release 3.0.1

which dimensions will be returned in the subcubes (i.e. the dimensions that
are not iterated over). A mix of input types can also be provided. They must
all be orthogonal (i.e. point to different dimensions).

Kwargs:
• ordered: if True, the order which the coords to slice or data_dims are

given will be the order in which they represent the data in the resulting cube
slices. If False, the order will follow that of the source cube. Default is
True.

Returns An iterator of subcubes.

For example, to get all 2d longitude/latitude subcubes from a multi-dimensional
cube:

for sub_cube in cube.slices(['longitude', 'latitude']):
print(sub_cube)

See also:

iris.cube.Cube.slices_over().

slices_over(ref_to_slice)
Return an iterator of all subcubes along a given coordinate or dimension index, or
multiple of these.

Args:
• ref_to_slice (string, coord, dimension index or a list of these): Determines

which dimensions will be iterated along (i.e. the dimensions that are not
returned in the subcubes). A mix of input types can also be provided.

Returns An iterator of subcubes.

For example, to get all subcubes along the time dimension:

for sub_cube in cube.slices_over('time'):
print(sub_cube)

See also:

iris.cube.Cube.slices().

Note: The order of dimension references to slice along does not affect the order of
returned items in the iterator; instead the ordering is based on the fastest-changing
dimension.

subset(coord)
Get a subset of the cube by providing the desired resultant coordinate. If the coor-
dinate provided applies to the whole cube; the whole cube is returned. As such, the
operation is not strict.

summary(shorten=False, name_padding=35)
Unicode string summary of the Cube with name, a list of dim coord names versus
length and optionally relevant coordinate information.

transpose(new_order=None)
Re-order the data dimensions of the cube in-place.
new_order - list of ints, optional By default, reverse the dimensions, otherwise

permute the axes according to the values given.

352 Chapter 27. Iris API

Iris, Release 3.0.1

Note: If defined, new_order must span all of the data dimensions.

Example usage:

put the second dimension first, followed by the third
→˓dimension,
and finally put the first dimension third::

>>> cube.transpose([1, 2, 0])

xml(checksum=False, order=True, byteorder=True)
Returns a fully valid CubeML string representation of the Cube.

property attributes
A dictionary, with a few restricted keys, for arbitrary Cube metadata.

property aux_coords
Return a tuple of all the auxiliary coordinates, ordered by dimension(s).

property aux_factories
Return a tuple of all the coordinate factories.

property cell_methods
Tuple of iris.coords.CellMethod representing the processing done on the
phenomenon.

property data
The numpy.ndarray representing the multi-dimensional data of the cube.

Note: Cubes obtained from netCDF, PP, and FieldsFile files will only populate
this attribute on its first use.

To obtain the shape of the data without causing it to be loaded, use the Cube.shape
attribute.

Example::

>>> fname = iris.sample_data_path('air_temp.pp')
>>> cube = iris.load_cube(fname, 'air_temperature')
>>> # cube.data does not yet have a value.
...
>>> print(cube.shape)
(73, 96)
>>> # cube.data still does not have a value.
...
>>> cube = cube[:10, :20]
>>> # cube.data still does not have a value.
...
>>> data = cube.data
>>> # Only now is the data loaded.
...
>>> print(data.shape)
(10, 20)

property derived_coords
Return a tuple of all the coordinates generated by the coordinate factories.

27.8. iris.cube 353

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

property dim_coords
Return a tuple of all the dimension coordinates, ordered by dimension.

Note: The length of the returned tuple is not necessarily the same as Cube.
ndim as there may be dimensions on the cube without dimension coordinates. It
is therefore unreliable to use the resulting tuple to identify the dimension coordi-
nates for a given dimension - instead use the Cube.coord() method with the
dimensions and dim_coords keyword arguments.

property dtype
The data type of the values in the data array of this Cube.

property long_name
The “long name” for the Cube’s phenomenon.

property metadata

property ndim
The number of dimensions in the data of this cube.

property shape
The shape of the data of this cube.

property standard_name
The “standard name” for the Cube’s phenomenon.

property units
An instance of cf_units.Unit describing the Cube’s data.

property var_name
The netCDF variable name for the Cube.

All the functionality of a standard list with added “Cube” context.

class iris.cube.CubeList(list_of_cubes=None)
Given a list of cubes, return a CubeList instance.

__getitem__(keys)
x.__getitem__(y) <==> x[y]

__getslice__(start, stop)
x.__getslice__(i, j) <==> x[i:j]

Use of negative indices is not supported.

static __new__(cls, list_of_cubes=None)
Given a list of cubes, return a CubeList instance.

__repr__()
Runs repr on every cube.

__str__()
Runs short Cube.summary() on every cube.

append(object, /)
Append object to the end of the list.

clear()
Remove all items from list.

354 Chapter 27. Iris API

Iris, Release 3.0.1

concatenate(check_aux_coords=True, check_cell_measures=True,
check_ancils=True)

Concatenate the cubes over their common dimensions.

Kwargs:
• check_aux_coords Checks the auxiliary coordinates of the cubes match. This

check is not applied to auxiliary coordinates that span the dimension the
concatenation is occurring along. Defaults to True.

• check_cell_measures Checks the cell measures of the cubes match. This
check is not applied to cell measures that span the dimension the concatena-
tion is occurring along. Defaults to True.

• check_ancils Checks the ancillary variables of the cubes match. This check is
not applied to ancillary variables that span the dimension the concatenation
is occurring along. Defaults to True.

Returns A new iris.cube.CubeList of concatenated iris.
cube.Cube instances.

This combines cubes with a common dimension coordinate, but occupying differ-
ent regions of the coordinate value. The cubes are joined across that dimension.

For example:

>>> print(c1)
some_parameter / (unknown) (y_vals: 2; x_vals: 4)

Dimension coordinates:
y_vals x -
x_vals - x

>>> print(c1.coord('y_vals').points)
[4 5]
>>> print(c2)
some_parameter / (unknown) (y_vals: 3; x_vals: 4)

Dimension coordinates:
y_vals x -
x_vals - x

>>> print(c2.coord('y_vals').points)
[7 9 10]
>>> cube_list = iris.cube.CubeList([c1, c2])
>>> new_cube = cube_list.concatenate()[0]
>>> print(new_cube)
some_parameter / (unknown) (y_vals: 5; x_vals: 4)

Dimension coordinates:
y_vals x -
x_vals - x

>>> print(new_cube.coord('y_vals').points)
[4 5 7 9 10]
>>>

Contrast this with iris.cube.CubeList.merge(), which makes a new di-
mension from values of an auxiliary scalar coordinate.

Note: Cubes may contain ‘extra’ dimensional elements such as auxiliary coordi-
nates, cell measures or ancillary variables. For a group of similar cubes to concate-
nate together into one output, all such elements which do not map to the concate-
nation axis must be identical in every input cube : these then appear unchanged
in the output. Similarly, those elements which do map to the concatenation axis
must have matching properties, but may have different data values : these then ap-
pear, concatenated, in the output cube. If any cubes in a group have dimensional

27.8. iris.cube 355

Iris, Release 3.0.1

elements which do not match correctly, the group will not concatenate to a single
output cube.

Note: If time coordinates in the list of cubes have differing epochs then the
cubes will not be able to be concatenated. If this occurs, use iris.util.
unify_time_units() to normalise the epochs of the time coordinates so that
the cubes can be concatenated.

Note: Concatenation cannot occur along an anonymous dimension.

concatenate_cube(check_aux_coords=True, check_cell_measures=True,
check_ancils=True)

Return the concatenated contents of the CubeList as a single Cube.

If it is not possible to concatenate the CubeList into a single Cube, a
ConcatenateError will be raised describing the reason for the failure.

Kwargs:
• check_aux_coords Checks the auxiliary coordinates of the cubes match. This

check is not applied to auxiliary coordinates that span the dimension the
concatenation is occurring along. Defaults to True.

• check_cell_measures Checks the cell measures of the cubes match. This
check is not applied to cell measures that span the dimension the concatena-
tion is occurring along. Defaults to True.

• check_ancils Checks the ancillary variables of the cubes match. This check is
not applied to ancillary variables that span the dimension the concatenation
is occurring along. Defaults to True.

Note: Concatenation cannot occur along an anonymous dimension.

copy()
Return a shallow copy of the list.

count(value, /)
Return number of occurrences of value.

extend(iterable, /)
Extend list by appending elements from the iterable.

extract(constraints)
Filter each of the cubes which can be filtered by the given constraints.

This method iterates over each constraint given, and subsets each of the cubes in
this CubeList where possible. Thus, a CubeList of length n when filtered with m
constraints can generate a maximum of m * n cubes.

Args:
• constraints (Constraint or iterable of constraints): A single constraint

or an iterable.

extract_cube(constraint)
Extract a single cube from a CubeList, and return it. Raise an error if the extract
produces no cubes, or more than one.

Args:

356 Chapter 27. Iris API

Iris, Release 3.0.1

• constraint (Constraint): The constraint to extract with.

extract_cubes(constraints)
Extract specific cubes from a CubeList, one for each given constraint. Each con-
straint must produce exactly one cube, otherwise an error is raised.

Args:
• constraints (iterable of, or single, Constraint): The constraints to ex-

tract with.

extract_overlapping(coord_names)
Returns a CubeList of cubes extracted over regions where the coordinates over-
lap, for the coordinates in coord_names.

Args:
• coord_names: A string or list of strings of the names of the coordinates over

which to perform the extraction.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

insert(index, object, /)
Insert object before index.

merge(unique=True)
Returns the CubeList resulting from merging this CubeList.

Kwargs:
• unique: If True, raises iris.exceptions.DuplicateDataError if duplicate cubes

are detected.
This combines cubes with different values of an auxiliary scalar coordinate, by
constructing a new dimension.

For example:

>>> print(c1)
some_parameter / (unknown) (x_vals: 3)

Dimension coordinates:
x_vals x

Scalar coordinates:
y_vals: 100

>>> print(c2)
some_parameter / (unknown) (x_vals: 3)

Dimension coordinates:
x_vals x

Scalar coordinates:
y_vals: 200

>>> cube_list = iris.cube.CubeList([c1, c2])
>>> new_cube = cube_list.merge()[0]
>>> print(new_cube)
some_parameter / (unknown) (y_vals: 2; x_vals: 3)

Dimension coordinates:
y_vals x -
x_vals - x

>>> print(new_cube.coord('y_vals').points)
[100 200]
>>>

27.8. iris.cube 357

Iris, Release 3.0.1

Contrast this with iris.cube.CubeList.concatenate(), which joins
cubes along an existing dimension.

Note: Cubes may contain additional dimensional elements such as auxiliary co-
ordinates, cell measures or ancillary variables. A group of similar cubes can only
merge to a single result if all such elements are identical in every input cube : they
are then present, unchanged, in the merged output cube.

Note: If time coordinates in the list of cubes have differing epochs then
the cubes will not be able to be merged. If this occurs, use iris.util.
unify_time_units() to normalise the epochs of the time coordinates so that
the cubes can be merged.

merge_cube()
Return the merged contents of the CubeList as a single Cube.

If it is not possible to merge the CubeList into a single Cube, a MergeError will
be raised describing the reason for the failure.

For example:

>>> cube_1 = iris.cube.Cube([1, 2])
>>> cube_1.add_aux_coord(iris.coords.AuxCoord(0, long_name=
→˓'x'))
>>> cube_2 = iris.cube.Cube([3, 4])
>>> cube_2.add_aux_coord(iris.coords.AuxCoord(1, long_name=
→˓'x'))
>>> cube_2.add_dim_coord(
... iris.coords.DimCoord([0, 1], long_name='z'), 0)
>>> single_cube = iris.cube.CubeList([cube_1, cube_2]).
→˓merge_cube()
Traceback (most recent call last):
...
iris.exceptions.MergeError: failed to merge into a single
→˓cube.
Coordinates in cube.dim_coords differ: z.
Coordinate-to-dimension mapping differs for cube.dim_

→˓coords.

pop(index=-1, /)
Remove and return item at index (default last).

Raises IndexError if list is empty or index is out of range.

realise_data()
Fetch ‘real’ data for all cubes, in a shared calculation.

This computes any lazy data, equivalent to accessing each cube.data. However,
lazy calculations and data fetches can be shared between the computations, im-
proving performance.

For example:

Form stats.
a_std = cube_a.collapsed(['x', 'y'], iris.analysis.STD_DEV)
b_std = cube_b.collapsed(['x', 'y'], iris.analysis.STD_DEV)

(continues on next page)

358 Chapter 27. Iris API

Iris, Release 3.0.1

(continued from previous page)

ab_mean_diff = (cube_b - cube_a).collapsed(['x', 'y'],
iris.analysis.

→˓MEAN)
std_err = (a_std * a_std + b_std * b_std) ** 0.5

Compute these stats together (avoiding multiple data
→˓passes).
CubeList([a_std, b_std, ab_mean_diff, std_err]).realise_
→˓data()

Note: Cubes with non-lazy data are not affected.

remove(value, /)
Remove first occurrence of value.

Raises ValueError if the value is not present.

reverse()
Reverse IN PLACE.

sort(*, key=None, reverse=False)
Stable sort IN PLACE.

xml(checksum=False, order=True, byteorder=True)
Return a string of the XML that this list of cubes represents.

27.9 iris.exceptions

Exceptions specific to the Iris package.

In this module:

• AncillaryVariableNotFoundError

• CellMeasureNotFoundError

• ConcatenateError

• ConstraintMismatchError

• CoordinateCollapseError

• CoordinateMultiDimError

• CoordinateNotFoundError

• CoordinateNotRegularError

• DuplicateDataError

• IgnoreCubeException

• InvalidCubeError

• IrisError

• LazyAggregatorError

• MergeError

27.9. iris.exceptions 359

Iris, Release 3.0.1

• NotYetImplementedError

• TranslationError

• UnitConversionError

Raised when a search yields no ancillary variables.

class iris.exceptions.AncillaryVariableNotFoundError
Raised when a search yields no ancillary variables.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a search yields no cell measures.

class iris.exceptions.CellMeasureNotFoundError
Raised when a search yields no cell measures.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when concatenate is expected to produce a single cube, but fails to do so.

class iris.exceptions.ConcatenateError(differences)
Creates a ConcatenateError with a list of textual descriptions of the differences which
prevented a concatenate.

Args:

• differences: The list of strings which describe the differences.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a constraint operation has failed to find the correct number of results.

class iris.exceptions.ConstraintMismatchError
Raised when a constraint operation has failed to find the correct number of results.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a requested coordinate cannot be collapsed.

class iris.exceptions.CoordinateCollapseError
Raised when a requested coordinate cannot be collapsed.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

360 Chapter 27. Iris API

Iris, Release 3.0.1

args

Raised when a routine doesn’t support multi-dimensional coordinates.

class iris.exceptions.CoordinateMultiDimError(msg)
Raised when a routine doesn’t support multi-dimensional coordinates.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a search yields no coordinates.

class iris.exceptions.CoordinateNotFoundError
Raised when a search yields no coordinates.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a coordinate is unexpectedly irregular.

class iris.exceptions.CoordinateNotRegularError
Raised when a coordinate is unexpectedly irregular.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when merging two or more cubes that have identical metadata.

class iris.exceptions.DuplicateDataError(msg)
Raised when merging two or more cubes that have identical metadata.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised from a callback function when a cube should be ignored on load.

class iris.exceptions.IgnoreCubeException
Raised from a callback function when a cube should be ignored on load.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when a Cube validation check fails.

class iris.exceptions.InvalidCubeError
Raised when a Cube validation check fails.

27.9. iris.exceptions 361

Iris, Release 3.0.1

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Base class for errors in the Iris package.

class iris.exceptions.IrisError
Base class for errors in the Iris package.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Common base class for all non-exit exceptions.

class iris.exceptions.LazyAggregatorError

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when merge is expected to produce a single cube, but fails to do so.

class iris.exceptions.MergeError(differences)
Creates a MergeError with a list of textual descriptions of the differences which pre-
vented a merge.

Args:

• differences: The list of strings which describe the differences.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised by missing functionality.

Different meaning to NotImplementedError, which is for abstract methods.

class iris.exceptions.NotYetImplementedError
Raised by missing functionality.

Different meaning to NotImplementedError, which is for abstract methods.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when Iris is unable to translate format-specific codes.

class iris.exceptions.TranslationError
Raised when Iris is unable to translate format-specific codes.

362 Chapter 27. Iris API

Iris, Release 3.0.1

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

Raised when Iris is unable to convert a unit.

class iris.exceptions.UnitConversionError
Raised when Iris is unable to convert a unit.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

27.10 iris.experimental

27.10.1 iris.experimental.animate

Wrapper for animating iris cubes using iris or matplotlib plotting functions

In this module:

• animate

iris.experimental.animate.animate(cube_iterator, plot_func, fig=None,
**kwargs)

Animates the given cube iterator.

Args:

• cube_iterator (iterable of iris.cube.Cube objects): Each animation frame
corresponds to each iris.cube.Cube object. See iris.cube.Cube.
slices().

• plot_func (iris.plot or iris.quickplot plotting function): Plotting
function used to animate. Must accept the signature plot_func(cube,
vmin=vmin, vmax=vmax, coords=coords). contourf(),
contour(), pcolor() and pcolormesh() all conform to this
signature.

Kwargs:

• fig (matplotlib.figure.Figure instance): By default, the current figure
will be used or a new figure instance created if no figure is available. See
matplotlib.pyplot.gcf().

• coords (list of Coord objects or coordinate names): Use the given coordinates
as the axes for the plot. The order of the given coordinates indicates which axis
to use for each, where the first element is the horizontal axis of the plot and the
second element is the vertical axis of the plot.

• interval (int, float or long): Defines the time interval in milliseconds between
successive frames. A default interval of 100ms is set.

• vmin, vmax (int, float or long): Color scaling values, see matplotlib.
colors.Normalize for further details. Default values are determined by
the min-max across the data set over the entire sequence.

27.10. iris.experimental 363

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gcf.html#matplotlib.pyplot.gcf
https://matplotlib.org/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize
https://matplotlib.org/api/_as_gen/matplotlib.colors.Normalize.html#matplotlib.colors.Normalize

Iris, Release 3.0.1

See matplotlib.animation.FuncAnimation for details of other valid key-
word arguments.

Returns FuncAnimation object suitable for saving and or plotting.

For example, to animate along a set of cube slices:

cube_iter = cubes.slices(('grid_longitude', 'grid_latitude'))
ani = animate(cube_iter, qplt.contourf)
plt.show()

27.10.2 iris.experimental.equalise_cubes

Experimental cube-adjusting functions to assist merge operations.

In this module:

• equalise_attributes

iris.experimental.equalise_cubes.equalise_attributes(cubes)
Delete cube attributes that are not identical over all cubes in a group.

Warning: This function is now disabled.

The functionality has been moved to iris.util.
equalise_attributes().

27.10.3 iris.experimental.regrid

Regridding functions.

In this module:

• regrid_area_weighted_rectilinear_src_and_grid

• regrid_weighted_curvilinear_to_rectilinear

• PointInCell

• ProjectedUnstructuredLinear

• ProjectedUnstructuredNearest

iris.experimental.regrid.regrid_area_weighted_rectilinear_src_and_grid(src_cube,
grid_cube,
md-
tol=0)

Return a new cube with data values calculated using the area weighted mean of data
values from src_grid regridded onto the horizontal grid of grid_cube.

This function requires that the horizontal grids of both cubes are rectilinear (i.e. ex-
pressed in terms of two orthogonal 1D coordinates) and that these grids are in the same
coordinate system. This function also requires that the coordinates describing the hori-
zontal grids all have bounds.

364 Chapter 27. Iris API

https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html#matplotlib.animation.FuncAnimation
https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html#matplotlib.animation.FuncAnimation

Iris, Release 3.0.1

Note: Elements in data array of the returned cube that lie either partially or entirely
outside of the horizontal extent of the src_cube will be masked irrespective of the value
of mdtol.

Args:

• src_cube: An instance of iris.cube.Cube that supplies the data, metadata
and coordinates.

• grid_cube: An instance of iris.cube.Cube that supplies the desired horizon-
tal grid definition.

Kwargs:

• mdtol: Tolerance of missing data. The value returned in each element of the re-
turned cube’s data array will be masked if the fraction of masked data in the
overlapping cells of the source cube exceeds mdtol. This fraction is calculated
based on the area of masked cells within each target cell. mdtol=0 means no
missing data is tolerated while mdtol=1 will mean the resulting element will be
masked if and only if all the overlapping cells of the source cube are masked.
Defaults to 0.

Returns A new iris.cube.Cube instance.

iris.experimental.regrid.regrid_weighted_curvilinear_to_rectilinear(src_cube,
weights,
grid_cube)

Return a new cube with the data values calculated using the weighted mean of data
values from src_cube and the weights from weights regridded onto the horizontal
grid of grid_cube.

This function requires that the src_cube has a horizontal grid defined by a pair of
X- and Y-axis coordinates which are mapped over the same cube dimensions, thus each
point has an individually defined X and Y coordinate value. The actual dimensions of
these coordinates are of no significance. The src_cube grid cube must have a normal
horizontal grid, i.e. expressed in terms of two orthogonal 1D horizontal coordinates.
Both grids must be in the same coordinate system, and the grid_cube must have
horizontal coordinates that are both bounded and contiguous.

Note that, for any given target grid_cube cell, only the points from the src_cube
that are bound by that cell will contribute to the cell result. The bounded extent of the
src_cube will not be considered here.

A target grid_cube cell result will be calculated as,
∑︀

(𝑠𝑟𝑐_𝑐𝑢𝑏𝑒.𝑑𝑎𝑡𝑎𝑖𝑗 *
𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑗)/

∑︀
𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑖𝑗 , for all 𝑖𝑗 src_cube points that are bound by that cell.

Warning:

• All coordinates that span the src_cube that don’t define the horizontal
curvilinear grid will be ignored.

Args:

• src_cube: A iris.cube.Cube instance that defines the source variable grid to
be regridded.

27.10. iris.experimental 365

Iris, Release 3.0.1

• weights (array or None): A numpy.ndarray instance that defines the weights
for the source variable grid cells. Must have the same shape as the X and Y
coordinates. If weights is None, all-ones will be used.

• grid_cube: A iris.cube.Cube instance that defines the target rectilinear grid.

Returns A iris.cube.Cube instance.

This class describes the point-in-cell regridding scheme for use typically with iris.cube.
Cube.regrid().

Warning: This class is now disabled.

The functionality has been moved to iris.analysis.PointInCell.

class iris.experimental.regrid.PointInCell(weights=None)
Point-in-cell regridding scheme suitable for regridding over one or more or-
thogonal coordinates.

Warning: This class is now disabled.

The functionality has been moved to iris.analysis.
PointInCell.

This class describes the linear regridding scheme which uses the scipy.interpolate.griddata to
regrid unstructured data on to a grid.

The source cube and the target cube will be projected into a common projection for the scipy
calculation to be performed.

class iris.experimental.regrid.ProjectedUnstructuredLinear(projection=None)
Linear regridding scheme that uses scipy.interpolate.griddata on projected un-
structured data.

Optional Args:
• projection: cartopy.crs instance The projection that the scipy calcula-

tion is performed in. If None is given, a PlateCarree projection is used.
Defaults to None.

regridder(src_cube, target_grid)
Creates a linear regridder to perform regridding, using
scipy.interpolate.griddata from unstructured source points to the
target grid. The regridding calculation is performed in the given
projection.

Typically you should use iris.cube.Cube.regrid() for regrid-
ding a cube. There are, however, some situations when constructing your
own regridder is preferable. These are detailed in the user guide.

Does not support lazy regridding.

Args:
• src_cube: The Cube defining the unstructured source points.
• target_grid: The Cube defining the target grid.

366 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

Returns

callable(cube)

where cube is a cube with the same grid as src_cube that is to be
regridded to the target_grid.

Return type A callable with the interface

This class describes the nearest regridding scheme which uses the scipy.interpolate.griddata
to regrid unstructured data on to a grid.

The source cube and the target cube will be projected into a common projection for the scipy
calculation to be performed.

Note: The iris.analysis.UnstructuredNearest scheme performs essentially
the same job. That calculation is more rigorously correct and may be applied to larger data
regions (including global). This one however, where applicable, is substantially faster.

class iris.experimental.regrid.ProjectedUnstructuredNearest(projection=None)
Nearest regridding scheme that uses scipy.interpolate.griddata on projected
unstructured data.

Optional Args:
• projection: cartopy.crs instance The projection that the scipy calcula-

tion is performed in. If None is given, a PlateCarree projection is used.
Defaults to None.

regridder(src_cube, target_grid)
Creates a nearest-neighbour regridder to perform regridding, using
scipy.interpolate.griddata from unstructured source points to the target
grid. The regridding calculation is performed in the given projection.

Typically you should use iris.cube.Cube.regrid() for regrid-
ding a cube. There are, however, some situations when constructing your
own regridder is preferable. These are detailed in the user guide.

Does not support lazy regridding.

Args:
• src_cube: The Cube defining the unstructured source points.
• target_grid: The Cube defining the target grid.

Returns

callable(cube)

where cube is a cube with the same grid as src_cube that is to be
regridded to the target_grid.

Return type A callable with the interface

27.10. iris.experimental 367

Iris, Release 3.0.1

27.10.4 iris.experimental.regrid_conservative

Support for conservative regridding via ESMPy.

In this module:

• regrid_conservative_via_esmpy

iris.experimental.regrid_conservative.regrid_conservative_via_esmpy(source_cube,
grid_cube)

Perform a conservative regridding with ESMPy.

Regrids the data of a source cube onto a new grid defined by a destination cube.

Args:

• source_cube (iris.cube.Cube): Source data. Must have two identifiable hor-
izontal dimension coordinates.

• grid_cube (iris.cube.Cube): Define the target horizontal grid: Only the hor-
izontal dimension coordinates are actually used.

Returns A new cube derived from source_cube, regridded onto the specified
horizontal grid.

Any additional coordinates which map onto the horizontal dimensions are removed,
while all other metadata is retained. If there are coordinate factories with 2d horizontal
reference surfaces, the reference surfaces are also regridded, using ordinary bilinear
interpolation.

Note: Both source and destination cubes must have two dimension coordinates identi-
fied with axes ‘X’ and ‘Y’ which share a coord_system with a Cartopy CRS. The grids
are defined by iris.coords.Coord.contiguous_bounds() of these.

Note: Initialises the ESMF Manager, if it was not already called. This implements
default Manager operations (e.g. logging).

To alter this, make a prior call to ESMF.Manager().

27.10.5 iris.experimental.representation

Definitions of how Iris objects should be represented.

In this module:

• CubeListRepresentation

• CubeRepresentation

None

class iris.experimental.representation.CubeListRepresentation(cubelist)

make_content()

repr_html()

368 Chapter 27. Iris API

Iris, Release 3.0.1

Produce representations of a Cube.

This includes:

• _html_repr_: a representation of the cube as an html object, available in Jupyter
notebooks. Specifically, this is presented as an html table.

class iris.experimental.representation.CubeRepresentation(cube)
Produce representations of a Cube.

This includes:
• _html_repr_: a representation of the cube as an html object, available

in Jupyter notebooks. Specifically, this is presented as an html table.
repr_html()

The repr interface for Jupyter.

27.10.6 iris.experimental.stratify

Routines for putting data on new strata (aka. isosurfaces), often in the Z direction.

In this module:

• relevel

iris.experimental.stratify.relevel(cube, src_levels, tgt_levels,
axis=None, interpolator=None)

Interpolate the cube onto the specified target levels, given the source levels of the cube.

For example, suppose we have two datasets P(i,j,k) and H(i,j,k) and we want P(i,j,H).
We call relevel() with cube=P, src_levels=H and tgt_levels being an array of the
values of H we would like.

This routine is especially useful for computing isosurfaces of phenomenon that are
generally monotonic in the direction of interpolation, such as height/pressure or salin-
ity/depth.

Args:

cube [Cube] The phenomenon data to be re-levelled.

src_levels [Cube, Coord or string] Describes the source levels of the cube that will
be interpolated over. The src_levels must be in the same system as the tgt_levels.
The dimensions of src_levels must be broadcastable to the dimensions of the cube.
Note that, the coordinate name containing the source levels in the cube may be
provided.

tgt_levels [array-like] Describes the target levels of the cube to be interpolated to. The
tgt_levels must be in the same system as the src_levels. The dimensions of the
tgt_levels must be broadcastable to the dimensions of the cube, except in the nom-
inated axis of interpolation.

axis [int, Coord or string] The axis of interpolation. Defaults to the first dimension
of the cube, which is typically the z-dimension. Note that, the coordinate name
specifying the z-dimension of the cube may be provided.

interpolator [callable or None] The interpolator to use when computing the interpola-
tion. The function will be passed the following positional arguments:

27.10. iris.experimental 369

Iris, Release 3.0.1

(tgt-data, src-data, cube-data, axis-of-interpolation)

If the interpolator is None, stratify.interpolate() will be used with lin-
ear interpolation and NaN extrapolation.

An example of constructing an alternative interpolation scheme:

from functools import partial
interpolator = partial(stratify.interpolate,

interpolation=stratify.INTERPOLATE_
→˓NEAREST,

extrapolation=stratify.EXTRAPOLATE_
→˓LINEAR)

27.10.7 iris.experimental.ugrid

Ugrid functions.

In this module:

• ugrid

iris.experimental.ugrid.ugrid(location, name)
Create a cube from an unstructured grid.

Args:

• location: A string whose value represents the path to a file or URL to an Open-
DAP resource conforming to the Unstructured Grid Metadata Conventions for
Scientific Datasets https://github.com/ugrid-conventions/ugrid-conventions

• name: A string whose value represents a cube loading constraint of first the stan-
dard name if found, then the long name if found, then the variable name if
found, before falling back to the value of the default which itself defaults to
“unknown”

Returns An instance of iris.cube.Cube decorated with an instance
of pyugrid.ugrid.Ugrid bound to an attribute of the cube called
“mesh”

Experimental code can be introduced to Iris through this package.

Changes to experimental code may be more extensive than in the rest of the codebase. The code is
expected to graduate, eventually, to “full status”.

In this module:

370 Chapter 27. Iris API

https://github.com/ugrid-conventions/ugrid-conventions

Iris, Release 3.0.1

27.11 iris.fileformats

27.11.1 iris.fileformats.abf

Provides ABF (and ABL) file format capabilities.

ABF and ABL files are satellite file formats defined by Boston University. Including this
module adds ABF and ABL loading to the session’s capabilities.

The documentation for this file format can be found here.

In this module:

• load_cubes

• ABFField

iris.fileformats.abf.load_cubes(filespecs, callback=None)
Loads cubes from a list of ABF filenames.

Args:

• filenames - list of ABF filenames to load

Kwargs:

• callback - a function that can be passed to iris.io.run_callback()

Note: The resultant cubes may not be in the same order as in the file.

A data field from an ABF (or ABL) file.

Capable of creating a Cube.

class iris.fileformats.abf.ABFField(filename)
Create an ABFField object from the given filename.

Parameters filename - An ABF filename. (*) –
Example:

field = ABFField("AVHRRBUVI01.1985feba.abl")

to_cube()
Return a new Cube from this ABFField.

27.11.2 iris.fileformats.cf

Provides the capability to load netCDF files and interpret them according to the ‘NetCDF
Climate and Forecast (CF) Metadata Conventions’.

References:

[CF] NetCDF Climate and Forecast (CF) Metadata conventions. [NUG] NetCDF User’s
Guide, https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/

In this module:

• CFAncillaryDataVariable

27.11. iris.fileformats 371

http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/

Iris, Release 3.0.1

• CFAuxiliaryCoordinateVariable

• CFBoundaryVariable

• CFClimatologyVariable

• CFCoordinateVariable

• CFDataVariable

• CFGridMappingVariable

• CFGroup

• CFLabelVariable

• CFMeasureVariable

• CFReader

• CFVariable

A CF-netCDF ancillary data variable is a variable that provides metadata about the individual
values of another data variable.

Identified by the CF-netCDF variable attribute ‘ancillary_variables’.

Ref: [CF] Section 3.4. Ancillary Data.

class iris.fileformats.cf.CFAncillaryDataVariable(name,
data)

A CF-netCDF ancillary data variable is a variable that provides metadata
about the individual values of another data variable.

Identified by the CF-netCDF variable attribute ‘ancillary_variables’.

Ref: [CF] Section 3.4. Ancillary Data.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

372 Chapter 27. Iris API

Iris, Release 3.0.1

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'ancillary_variables'

A CF-netCDF auxiliary coordinate variable is any netCDF variable that contains coordinate
data, but is not a CF-netCDF coordinate variable by definition.

There is no relationship between the name of a CF-netCDF auxiliary coordinate variable and
the name(s) of its dimension(s).

Identified by the CF-netCDF variable attribute ‘coordinates’. Also see iris.
fileformats.cf.CFLabelVariable.

Ref: [CF] Chapter 5. Coordinate Systems. [CF] Section 6.2. Alternative Coordinates.

class iris.fileformats.cf.CFAuxiliaryCoordinateVariable(name,
data)

A CF-netCDF auxiliary coordinate variable is any netCDF variable that con-
tains coordinate data, but is not a CF-netCDF coordinate variable by defini-
tion.

There is no relationship between the name of a CF-netCDF auxiliary coordi-
nate variable and the name(s) of its dimension(s).

Identified by the CF-netCDF variable attribute ‘coordinates’. Also see
iris.fileformats.cf.CFLabelVariable.

27.11. iris.fileformats 373

Iris, Release 3.0.1

Ref: [CF] Chapter 5. Coordinate Systems. [CF] Section 6.2. Alternative
Coordinates.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:

374 Chapter 27. Iris API

Iris, Release 3.0.1

• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'coordinates'

A CF-netCDF boundary variable is associated with a CF-netCDF variable that contains co-
ordinate data. When a data value provides information about conditions in a cell occupying a
region of space/time or some other dimension, the boundary variable provides a description
of cell extent.

A CF-netCDF boundary variable will have one more dimension than its associated CF-
netCDF coordinate variable or CF-netCDF auxiliary coordinate variable.

Identified by the CF-netCDF variable attribute ‘bounds’.

Ref: [CF] Section 7.1. Cell Boundaries.

class iris.fileformats.cf.CFBoundaryVariable(name,
data)

A CF-netCDF boundary variable is associated with a CF-netCDF variable
that contains coordinate data. When a data value provides information about
conditions in a cell occupying a region of space/time or some other dimen-
sion, the boundary variable provides a description of cell extent.

A CF-netCDF boundary variable will have one more dimension than its as-
sociated CF-netCDF coordinate variable or CF-netCDF auxiliary coordinate
variable.

Identified by the CF-netCDF variable attribute ‘bounds’.

Ref: [CF] Section 7.1. Cell Boundaries.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

27.11. iris.fileformats 375

Iris, Release 3.0.1

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'bounds'

A CF-netCDF climatology variable is associated with a CF-netCDF variable that contains
coordinate data. When a data value provides information about conditions in a cell occu-
pying a region of space/time or some other dimension, the climatology variable provides a
climatological description of cell extent.

A CF-netCDF climatology variable will have one more dimension than its associated CF-
netCDF coordinate variable.

Identified by the CF-netCDF variable attribute ‘climatology’.

Ref: [CF] Section 7.4. Climatological Statistics

class iris.fileformats.cf.CFClimatologyVariable(name,
data)

A CF-netCDF climatology variable is associated with a CF-netCDF variable
that contains coordinate data. When a data value provides information about
conditions in a cell occupying a region of space/time or some other dimen-
sion, the climatology variable provides a climatological description of cell
extent.

A CF-netCDF climatology variable will have one more dimension than its
associated CF-netCDF coordinate variable.

376 Chapter 27. Iris API

Iris, Release 3.0.1

Identified by the CF-netCDF variable attribute ‘climatology’.

Ref: [CF] Section 7.4. Climatological Statistics

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

27.11. iris.fileformats 377

Iris, Release 3.0.1

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'climatology'

A CF-netCDF coordinate variable is a one-dimensional variable with the same name as its
dimension, and it is defined as a numeric data type with values that are ordered monotonically.
Missing values are not allowed in CF-netCDF coordinate variables. Also see [NUG] Section
2.3.1.

Identified by the above criterion, there is no associated CF-netCDF variable attribute.

Ref: [CF] 1.2. Terminology.

class iris.fileformats.cf.CFCoordinateVariable(name,
data)

A CF-netCDF coordinate variable is a one-dimensional variable with the
same name as its dimension, and it is defined as a numeric data type with
values that are ordered monotonically. Missing values are not allowed in CF-
netCDF coordinate variables. Also see [NUG] Section 2.3.1.

Identified by the above criterion, there is no associated CF-netCDF variable
attribute.

Ref: [CF] 1.2. Terminology.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

378 Chapter 27. Iris API

Iris, Release 3.0.1

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True, monotonic=False)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = None

A CF-netCDF variable containing data pay-load that maps to an Iris iris.cube.Cube.

class iris.fileformats.cf.CFDataVariable(name, data)
A CF-netCDF variable containing data pay-load that maps to an Iris iris.
cube.Cube.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

27.11. iris.fileformats 379

Iris, Release 3.0.1

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = None

A CF-netCDF grid mapping variable contains a list of specific attributes that define a
particular grid mapping. A CF-netCDF grid mapping variable must contain the attribute
‘grid_mapping_name’.

Based on the value of the ‘grid_mapping_name’ attribute, there are associated standard names
of CF-netCDF coordinate variables that contain the mapping’s independent variables.

Identified by the CF-netCDF variable attribute ‘grid_mapping’.

Ref: [CF] Section 5.6. Horizontal Coordinate Reference Systems, Grid Mappings, and Projections.
[CF] Appendix F. Grid Mappings.

class iris.fileformats.cf.CFGridMappingVariable(name,
data)

A CF-netCDF grid mapping variable contains a list of specific attributes that
define a particular grid mapping. A CF-netCDF grid mapping variable must
contain the attribute ‘grid_mapping_name’.

380 Chapter 27. Iris API

Iris, Release 3.0.1

Based on the value of the ‘grid_mapping_name’ attribute, there are asso-
ciated standard names of CF-netCDF coordinate variables that contain the
mapping’s independent variables.

Identified by the CF-netCDF variable attribute ‘grid_mapping’.
Ref: [CF] Section 5.6. Horizontal Coordinate Reference Systems, Grid Mappings, and Projections.

[CF] Appendix F. Grid Mappings.
add_formula_term(root, term)

Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

27.11. iris.fileformats 381

Iris, Release 3.0.1

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'grid_mapping'

Represents a collection of ‘NetCDF Climate and Forecast (CF) Metadata Conventions’ vari-
ables and netCDF global attributes.

class iris.fileformats.cf.CFGroup
Represents a collection of ‘NetCDF Climate and Forecast (CF) Metadata
Conventions’ variables and netCDF global attributes.

clear()→ None. Remove all items from D.

get(k[, d])→ D[k] if k in D, else d. d defaults to None.

items()→ a set-like object providing a view on D’s items

keys()
Return the names of all the CF-netCDF variables in the group.

pop(k[, d]) → v, remove specified key and return the corresponding
value.

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()→ (k, v), remove and return some (key, value) pair
as a 2-tuple; but raise KeyError if D is empty.

setdefault(k[, d])→ D.get(k,d), also set D[k]=d if k not in D

update([E], **F) → None. Update D from mapping/iterable E and
F.

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E
present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either
case, this is followed by: for k, v in F.items(): D[k] = v

values()→ an object providing a view on D’s values

property ancillary_variables
Collection of CF-netCDF ancillary variables.

property auxiliary_coordinates
Collection of CF-netCDF auxiliary coordinate variables.

property bounds
Collection of CF-netCDF boundary variables.

property cell_measures
Collection of CF-netCDF measure variables.

property climatology
Collection of CF-netCDF climatology variables.

property coordinates
Collection of CF-netCDF coordinate variables.

property data_variables
Collection of CF-netCDF data pay-load variables.

382 Chapter 27. Iris API

Iris, Release 3.0.1

property formula_terms
Collection of CF-netCDF variables that participate in a CF-netCDF for-
mula term.

global_attributes
Collection of netCDF global attributes

property grid_mappings
Collection of CF-netCDF grid mapping variables.

property labels
Collection of CF-netCDF label variables.

promoted
Collection of CF-netCDF variables promoted to a CFDataVariable.

A CF-netCDF CF label variable is any netCDF variable that contain string textual informa-
tion, or labels.

Identified by the CF-netCDF variable attribute ‘coordinates’. Also see iris.
fileformats.cf.CFAuxiliaryCoordinateVariable.

Ref: [CF] Section 6.1. Labels.

class iris.fileformats.cf.CFLabelVariable(name, data)
A CF-netCDF CF label variable is any netCDF variable that contain string
textual information, or labels.

Identified by the CF-netCDF variable attribute ‘coordinates’. Also see
iris.fileformats.cf.CFAuxiliaryCoordinateVariable.

Ref: [CF] Section 6.1. Labels.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

27.11. iris.fileformats 383

Iris, Release 3.0.1

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

cf_label_data(cf_data_var)
Return the associated CF-netCDF label variable strings.

Args:
• cf_data_var (iris.fileformats.cf.CFDataVariable):

The CF-netCDF data variable which the CF-netCDF label variable
describes.

Returns String labels.

cf_label_dimensions(cf_data_var)
Return the name of the associated CF-netCDF label variable data dimen-
sions.

Args:
• cf_data_var (iris.fileformats.cf.CFDataVariable):

The CF-netCDF data variable which the CF-netCDF label variable
describes.

Returns Tuple of label data dimension names.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'coordinates'

A CF-netCDF measure variable is a variable that contains cell areas or volumes.

384 Chapter 27. Iris API

Iris, Release 3.0.1

Identified by the CF-netCDF variable attribute ‘cell_measures’.

Ref: [CF] Section 7.2. Cell Measures.

class iris.fileformats.cf.CFMeasureVariable(name,
data,
measure)

A CF-netCDF measure variable is a variable that contains cell areas or vol-
umes.

Identified by the CF-netCDF variable attribute ‘cell_measures’.

Ref: [CF] Section 7.2. Cell Measures.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

classmethod identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

27.11. iris.fileformats 385

Iris, Release 3.0.1

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_identity = 'cell_measures'

cf_measure
Associated cell measure of the cell variable

This class allows the contents of a netCDF file to be interpreted according to the ‘NetCDF
Climate and Forecast (CF) Metadata Conventions’.

class iris.fileformats.cf.CFReader(filename, warn=False,
monotonic=False)

This class allows the contents of a netCDF file to be interpreted according to
the ‘NetCDF Climate and Forecast (CF) Metadata Conventions’.

cf_group
Collection of CF-netCDF variables associated with this netCDF file

Abstract base class wrapper for a CF-netCDF variable.

class iris.fileformats.cf.CFVariable(name, data)
Abstract base class wrapper for a CF-netCDF variable.

add_formula_term(root, term)
Register the participation of this CF-netCDF variable in a CF-netCDF
formula term.

Args:
• root (string): The name of CF-netCDF variable that defines the CF-

netCDF formula_terms attribute.
• term (string): The associated term name of this variable in the for-

mula_terms definition.

Returns None.

cf_attrs()
Return a list of all attribute name and value pairs of the CF-netCDF vari-
able.

cf_attrs_ignored()
Return a list of all ignored attribute name and value pairs of the CF-
netCDF variable.

cf_attrs_reset()
Reset the history of accessed attribute names of the CF-netCDF variable.

cf_attrs_unused()
Return a list of all non-accessed attribute name and value pairs of the
CF-netCDF variable.

386 Chapter 27. Iris API

Iris, Release 3.0.1

cf_attrs_used()
Return a list of all accessed attribute name and value pairs of the CF-
netCDF variable.

has_formula_terms()
Determine whether this CF-netCDF variable participates in a CF-netcdf
formula term.

Returns Boolean.

abstract identify(variables, ignore=None, target=None,
warn=True)

Identify all variables that match the criterion for this CF-netCDF variable
class.

Args:
• variables: Dictionary of netCDF4.Variable instance by variable

name.
Kwargs:
• ignore: List of variable names to ignore.
• target: Name of a single variable to check.
• warn: Issue a warning if a missing variable is referenced.

Returns Dictionary of CFVariable instance by variable name.

spans(cf_variable)
Determine whether the dimensionality of this variable is a subset of the
specified target variable.

Note that, by default scalar variables always span the dimensionality of
the target variable.

Args:
• cf_variable: Compare dimensionality with the CFVariable.

Returns Boolean.

cf_data
NetCDF4 Variable data instance.

cf_group
Collection of CF-netCDF variables associated with this variable.

cf_identity = None
Name of the netCDF variable attribute that identifies this CF-netCDF
variable.

cf_name
NetCDF variable name.

cf_terms_by_root
CF-netCDF formula terms that his variable participates in.

27.11. iris.fileformats 387

Iris, Release 3.0.1

27.11.3 iris.fileformats.dot

Provides Creation and saving of DOT graphs for a iris.cube.Cube.

In this module:

• cube_text

• save

• save_png

iris.fileformats.dot.cube_text(cube)
Return a DOT text representation a iris.cube.Cube.

Parameters cube - The cube for which to create DOT
text. (*) –

iris.fileformats.dot.save(cube, target)
Save a dot representation of the cube.

:param * cube - A iris.cube.Cube.: :param * target - A filename or open file
handle.:

See also iris.io.save().

iris.fileformats.dot.save_png(source, target, launch=False)
Produces a “dot” instance diagram by calling dot and optionally launching the resulting
image.

:param * source - A iris.cube.Cube: :param or dot filename.: :param * target -
A filename or open file handle.: If passing a file handle, take care to open it for binary
output.

Kwargs:

• launch - Display the image. Default is False.

See also iris.io.save().

27.11.4 iris.fileformats.name

Provides NAME file format loading capabilities.

In this module:

• load_cubes

iris.fileformats.name.load_cubes(filenames, callback)
Return a generator of cubes given one or more filenames and an optional callback.

Args:

• filenames (string/list): One or more NAME filenames to load.

Kwargs:

• callback (callable function): A function which can be passed on to iris.io.
run_callback().

Returns A generator of iris.cubes.Cube instances.

388 Chapter 27. Iris API

Iris, Release 3.0.1

27.11.5 iris.fileformats.name_loaders

NAME file format loading functions.

In this module:

• load_NAMEIII_field

• load_NAMEIII_timeseries

• load_NAMEIII_trajectory

• load_NAMEIII_version2

• load_NAMEII_field

• load_NAMEII_timeseries

• read_header

• NAMECoord

iris.fileformats.name_loaders.load_NAMEIII_field(filename)
Load a NAME III grid output file returning a generator of iris.cube.Cube in-
stances.

Args:

• filename (string): Name of file to load.

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.load_NAMEIII_timeseries(filename)
Load a NAME III time series file returning a generator of iris.cube.Cube in-
stances.

Args:

• filename (string): Name of file to load.

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.load_NAMEIII_trajectory(filename)
Load a NAME III trajectory file returning a generator of iris.cube.Cube instances.

Args:

• filename (string): Name of file to load.

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.load_NAMEIII_version2(filename)
Load a NAME III version 2 file returning a generator of iris.cube.Cube instances.

Args:

• filename (string): Name of file to load.

27.11. iris.fileformats 389

Iris, Release 3.0.1

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.load_NAMEII_field(filename)
Load a NAME II grid output file returning a generator of iris.cube.Cube in-
stances.

Args:

• filename (string): Name of file to load.

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.load_NAMEII_timeseries(filename)
Load a NAME II Time Series file returning a generator of iris.cube.Cube in-
stances.

Args:

• filename (string): Name of file to load.

Returns A generator iris.cube.Cube instances.

iris.fileformats.name_loaders.read_header(file_handle)
Return a dictionary containing the header information extracted from the the provided
NAME file object.

Args:

• file_handle (file-like object): A file-like object from which to read the header in-
formation.

Returns A dictionary containing the extracted header information.

NAMECoord(name, dimension, values)

class iris.fileformats.name_loaders.NAMECoord(_cls,
name,
dimen-
sion,
val-
ues)

Create new instance of NAMECoord(name, dimension, values)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property dimension
Alias for field number 1

390 Chapter 27. Iris API

Iris, Release 3.0.1

property name
Alias for field number 0

property values
Alias for field number 2

27.11.6 iris.fileformats.netcdf

Module to support the loading of a NetCDF file into an Iris cube.

See also: netCDF4 python.

Also refer to document ‘NetCDF Climate and Forecast (CF) Metadata Conventions’.

In this module:

• load_cubes

• parse_cell_methods

• save

• CFNameCoordMap

• NetCDFDataProxy

• Saver

• UnknownCellMethodWarning

iris.fileformats.netcdf.load_cubes(filenames, callback=None)
Loads cubes from a list of NetCDF filenames/URLs.

Args:

• filenames (string/list): One or more NetCDF filenames/DAP URLs to load from.

Kwargs:

• callback (callable function): Function which can be passed on to iris.io.
run_callback().

Returns Generator of loaded NetCDF iris.cubes.Cube.

iris.fileformats.netcdf.parse_cell_methods(nc_cell_methods)
Parse a CF cell_methods attribute string into a tuple of zero or more CellMethod in-
stances.

Args:

• nc_cell_methods (str): The value of the cell methods attribute to be parsed.

Returns:

• cell_methods An iterable of iris.coords.CellMethod.

Multiple coordinates, intervals and comments are supported. If a method has a non-
standard name a warning will be issued, but the results are not affected.

27.11. iris.fileformats 391

http://code.google.com/p/netcdf4-python/

Iris, Release 3.0.1

iris.fileformats.netcdf.save(cube, filename,
netcdf_format='NETCDF4',
local_keys=None, unlim-
ited_dimensions=None, zlib=False,
complevel=4, shuffle=True,
fletcher32=False, contiguous=False,
chunksizes=None, endian='native',
least_significant_digit=None, pack-
ing=None, fill_value=None)

Save cube(s) to a netCDF file, given the cube and the filename.

• Iris will write CF 1.7 compliant NetCDF files.

• The attributes dictionaries on each cube in the saved cube list will be compared and
common attributes saved as NetCDF global attributes where appropriate.

• Keyword arguments specifying how to save the data are applied to each cube.
To use different settings for different cubes, use the NetCDF Context manager
(Saver) directly.

• The save process will stream the data payload to the file using dask, enabling
large data payloads to be saved and maintaining the ‘lazy’ status of the cube’s
data payload, unless the netcdf_format is explicitly specified to be ‘NETCDF3’ or
‘NETCDF3_CLASSIC’.

Args:

• cube (iris.cube.Cube or iris.cube.CubeList): A iris.cube.
Cube, iris.cube.CubeList or other iterable of cubes to be saved to a
netCDF file.

• filename (string): Name of the netCDF file to save the cube(s).

Kwargs:

• netcdf_format (string): Underlying netCDF file format, one of ‘NETCDF4’,
‘NETCDF4_CLASSIC’, ‘NETCDF3_CLASSIC’ or ‘NETCDF3_64BIT’. De-
fault is ‘NETCDF4’ format.

• local_keys (iterable of strings): An interable of cube attribute keys. Any cube
attributes with matching keys will become attributes on the data variable rather
than global attributes.

• unlimited_dimensions (iterable of strings and/or

iris.coords.Coord objects): List of coordinate names (or coordinate
objects) corresponding to coordinate dimensions of cube to save with the
NetCDF dimension variable length ‘UNLIMITED’. By default, no unlim-
ited dimensions are saved. Only the ‘NETCDF4’ format supports multiple
‘UNLIMITED’ dimensions.

• zlib (bool): If True, the data will be compressed in the netCDF file using gzip
compression (default False).

• complevel (int): An integer between 1 and 9 describing the level of compression
desired (default 4). Ignored if zlib=False.

• shuffle (bool): If True, the HDF5 shuffle filter will be applied before compressing
the data (default True). This significantly improves compression. Ignored if
zlib=False.

392 Chapter 27. Iris API

Iris, Release 3.0.1

• fletcher32 (bool): If True, the Fletcher32 HDF5 checksum algorithm is activated
to detect errors. Default False.

• contiguous (bool): If True, the variable data is stored contiguously on disk. De-
fault False. Setting to True for a variable with an unlimited dimension will
trigger an error.

• chunksizes (tuple of int): Used to manually specify the HDF5 chunksizes for
each dimension of the variable. A detailed discussion of HDF chunking
and I/O performance is available here: https://www.unidata.ucar.edu/software/
netcdf/documentation/NUG/netcdf_perf_chunking.html. Basically, you want
the chunk size for each dimension to match as closely as possible the size of
the data block that users will read from the file. chunksizes cannot be set if
contiguous=True.

• endian (string): Used to control whether the data is stored in little or big endian
format on disk. Possible values are ‘little’, ‘big’ or ‘native’ (default). The
library will automatically handle endian conversions when the data is read, but
if the data is always going to be read on a computer with the opposite format
as the one used to create the file, there may be some performance advantage to
be gained by setting the endian-ness.

• least_significant_digit (int): If least_significant_digit is specified, variable
data will be truncated (quantized). In conjunction with zlib=True
this produces ‘lossy’, but significantly more efficient compression.
For example, if least_significant_digit=1, data will be quantized us-
ing numpy.around(scale*data)/scale, where scale = 2**bits, and bits
is determined so that a precision of 0.1 is retained (in this case
bits=4). From http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_
netcdf_standard.shtml: “least_significant_digit – power of ten of the small-
est decimal place in unpacked data that is a reliable value”. Default is None,
or no quantization, or ‘lossless’ compression.

• packing (type or string or dict or list): A numpy integer datatype (signed or
unsigned) or a string that describes a numpy integer dtype (i.e. ‘i2’, ‘short’,
‘u4’) or a dict of packing parameters as described below or an iterable of such
types, strings, or dicts. This provides support for netCDF data packing as
described in http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.
html#bp_Packed-Data-Values If this argument is a type (or type string),
appropriate values of scale_factor and add_offset will be automatically
calculated based on cube.data and possible masking. For more control, pass
a dict with one or more of the following keys: dtype (required), scale_factor
and add_offset. Note that automatic calculation of packing parameters will
trigger loading of lazy data; set them manually using a dict to avoid this. The
default is None, in which case the datatype is determined from the cube and
no packing will occur. If this argument is a list it must have the same number
of elements as cube if cube is a :class:`iris.cube.CubeList, or one element, and
each element of this argument will be applied to each cube separately.

• fill_value (numeric or list): The value to use for the _FillValue attribute on the
netCDF variable. If packing is specified the value of fill_value should be in
the domain of the packed data. If this argument is a list it must have the same
number of elements as cube if cube is a :class:`iris.cube.CubeList, or a sin-
gle element, and each element of this argument will be applied to each cube
separately.

Returns None.

27.11. iris.fileformats 393

https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html
http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml
http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml
http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html#bp_Packed-Data-Values
http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html#bp_Packed-Data-Values

Iris, Release 3.0.1

Note: The zlib, complevel, shuffle, fletcher32, contiguous, chunksizes and endian key-
words are silently ignored for netCDF 3 files that do not use HDF5.

See also:

NetCDF Context manager (Saver).

Provide a simple CF name to CF coordinate mapping.

class iris.fileformats.netcdf.CFNameCoordMap
Provide a simple CF name to CF coordinate mapping.

append(name, coord)
Append the given name and coordinate pair to the mapping.

Args:
• name: CF name of the associated coordinate.
• coord: The coordinate of the associated CF name.

Returns None.

coord(name)
Return the coordinate, given a CF name.

Args:
• name: CF name of the associated coordinate.

Returns CF name.

name(coord)
Return the CF name, given a coordinate

Args:
• coord: The coordinate of the associated CF name.

Returns Coordinate.

property coords
Return all the coordinates.

property names
Return all the CF names.

A reference to the data payload of a single NetCDF file variable.

class iris.fileformats.netcdf.NetCDFDataProxy(shape,
dtype,
path,
vari-
able_name,
fill_value)

A reference to the data payload of a single NetCDF file variable.

dtype

fill_value

property ndim

394 Chapter 27. Iris API

Iris, Release 3.0.1

path

shape

variable_name

A manager for saving netcdf files.

class iris.fileformats.netcdf.Saver(filename,
netcdf_format)

A manager for saving netcdf files.

Args:
• filename (string): Name of the netCDF file to save the cube.
• netcdf_format (string): Underlying netCDF file format, one of

‘NETCDF4’, ‘NETCDF4_CLASSIC’, ‘NETCDF3_CLASSIC’ or
‘NETCDF3_64BIT’. Default is ‘NETCDF4’ format.

Returns None.

For example:

Initialise Manager for saving
with Saver(filename, netcdf_format) as sman:

Iterate through the cubelist.
for cube in cubes:

sman.write(cube)

__exit__(type, value, traceback)
Flush any buffered data to the CF-netCDF file before closing.

static cf_valid_var_name(var_name)
Return a valid CF var_name given a potentially invalid name.

Args:
• var_name (str): The var_name to normalise

Returns A var_name suitable for passing through for variable cre-
ation.

static check_attribute_compliance(container, data)

update_global_attributes(attributes=None, **kwargs)
Update the CF global attributes based on the provided iterable/dictionary
and/or keyword arguments.

Args:
• attributes (dict or iterable of key, value pairs): CF global attributes

to be updated.

write(cube, local_keys=None, unlimited_dimensions=None,
zlib=False, complevel=4, shuffle=True, fletcher32=False,
contiguous=False, chunksizes=None, endian='native',
least_significant_digit=None, packing=None,
fill_value=None)

Wrapper for saving cubes to a NetCDF file.

Args:
• cube (iris.cube.Cube): A iris.cube.Cube to be saved to a

netCDF file.
Kwargs:

27.11. iris.fileformats 395

Iris, Release 3.0.1

• local_keys (iterable of strings): An interable of cube attribute keys.
Any cube attributes with matching keys will become attributes on
the data variable rather than global attributes.

• unlimited_dimensions (iterable of strings and/or
iris.coords.Coord objects): List of coordinate names (or

coordinate objects) corresponding to coordinate dimensions of
cube to save with the NetCDF dimension variable length ‘UN-
LIMITED’. By default, no unlimited dimensions are saved. Only
the ‘NETCDF4’ format supports multiple ‘UNLIMITED’ dimen-
sions.

• zlib (bool): If True, the data will be compressed in the netCDF file
using gzip compression (default False).

• complevel (int): An integer between 1 and 9 describing the level of
compression desired (default 4). Ignored if zlib=False.

• shuffle (bool): If True, the HDF5 shuffle filter will be applied before
compressing the data (default True). This significantly improves
compression. Ignored if zlib=False.

• fletcher32 (bool): If True, the Fletcher32 HDF5 checksum algorithm
is activated to detect errors. Default False.

• contiguous (bool): If True, the variable data is stored contiguously on
disk. Default False. Setting to True for a variable with an unlimited
dimension will trigger an error.

• chunksizes (tuple of int): Used to manually specify the HDF5
chunksizes for each dimension of the variable. A detailed
discussion of HDF chunking and I/O performance is available
here: https://www.unidata.ucar.edu/software/netcdf/documentation/
NUG/netcdf_perf_chunking.html. Basically, you want the chunk
size for each dimension to match as closely as possible the size of
the data block that users will read from the file. chunksizes cannot
be set if contiguous=True.

• endian (string): Used to control whether the data is stored in little
or big endian format on disk. Possible values are ‘little’, ‘big’ or
‘native’ (default). The library will automatically handle endian con-
versions when the data is read, but if the data is always going to be
read on a computer with the opposite format as the one used to cre-
ate the file, there may be some performance advantage to be gained
by setting the endian-ness.

• least_significant_digit (int): If least_significant_digit is specified,
variable data will be truncated (quantized). In conjunction with
zlib=True this produces ‘lossy’, but significantly more efficient
compression. For example, if least_significant_digit=1, data
will be quantized using numpy.around(scale*data)/scale, where
scale = 2**bits, and bits is determined so that a precision of
0.1 is retained (in this case bits=4). From http://www.esrl.noaa.
gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml:
“least_significant_digit – power of ten of the smallest decimal place
in unpacked data that is a reliable value”. Default is None, or no
quantization, or ‘lossless’ compression.

• packing (type or string or dict or list): A numpy integer datatype
(signed or unsigned) or a string that describes a numpy integer
dtype(i.e. ‘i2’, ‘short’, ‘u4’) or a dict of packing parameters as
described below. This provides support for netCDF data packing
as described in http://www.unidata.ucar.edu/software/netcdf/docs/
BestPractices.html#bp_Packed-Data-Values If this argument is

396 Chapter 27. Iris API

https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_perf_chunking.html
http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml
http://www.esrl.noaa.gov/psd/data/gridded/conventions/cdc_netcdf_standard.shtml
http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html#bp_Packed-Data-Values
http://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html#bp_Packed-Data-Values

Iris, Release 3.0.1

a type (or type string), appropriate values of scale_factor and
add_offset will be automatically calculated based on cube.data and
possible masking. For more control, pass a dict with one or more of
the following keys: dtype (required), scale_factor and add_offset.
Note that automatic calculation of packing parameters will trigger
loading of lazy data; set them manually using a dict to avoid this.
The default is None, in which case the datatype is determined from
the cube and no packing will occur.

• fill_value: The value to use for the _FillValue attribute on the netCDF
variable. If packing is specified the value of fill_value should be in
the domain of the packed data.

Returns None.

Note: The zlib, complevel, shuffle, fletcher32, contiguous, chunksizes
and endian keywords are silently ignored for netCDF 3 files that do not
use HDF5.

Base class for warning categories.

class iris.fileformats.netcdf.UnknownCellMethodWarning

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return
self.

args

27.11.7 iris.fileformats.nimrod

Provides NIMROD file format capabilities.

In this module:

• load_cubes

• NimrodField

iris.fileformats.nimrod.load_cubes(filenames, callback=None)
Loads cubes from a list of NIMROD filenames.

Args:

• filenames - list of NIMROD filenames to load

Kwargs:

• callback - a function which can be passed on to iris.io.
run_callback()

Note: The resultant cubes may not be in the same order as in the files.

A data field from a NIMROD file.

27.11. iris.fileformats 397

Iris, Release 3.0.1

Capable of converting itself into a Cube

References: Met Office (2003): Met Office Rain Radar Data from the NIMROD System.
NCAS British Atmospheric Data Centre, date of citation. http://catalogue.ceda.ac.uk/
uuid/82adec1f896af6169112d09cc1174499

class iris.fileformats.nimrod.NimrodField(from_file=None)
Create a NimrodField object and optionally read from an open file.

Example:

with open("nimrod_file", "rb") as infile:
field = NimrodField(infile)

read(infile)
Read the next field from the given file object.

27.11.8 iris.fileformats.nimrod_load_rules

Rules for converting NIMROD fields into cubes.

In this module:

• run

iris.fileformats.nimrod_load_rules.run(field, han-
dle_metadata_errors=True)

Convert a NIMROD field to an Iris cube.

:param * field - a NimrodField: :param * handle_metadata_errors - Set to False to
omit handling of known meta-data deficiencies: in Nimrod-format data

Returns

• A new Cube, created from the NimrodField.

27.11.9 iris.fileformats.pp

Provides UK Met Office Post Process (PP) format specific capabilities.

In this module:

• load

• save

• load_cubes

• PPField

• as_fields

• load_pairs_from_fields

• save_pairs_from_cube

• save_fields

• STASH

• EARTH_RADIUS

398 Chapter 27. Iris API

http://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499
http://catalogue.ceda.ac.uk/uuid/82adec1f896af6169112d09cc1174499

Iris, Release 3.0.1

iris.fileformats.pp.load(filename, read_data=False, little_ended=False)
Return an iterator of PPFields given a filename.

Args:

• filename - string of the filename to load.

Kwargs:

• read_data - boolean Flag whether or not the data should be read, if False an
empty data manager will be provided which can subsequently load the data
on demand. Default False.

• little_ended - boolean If True, file contains all little-ended words (header and
data).

To iterate through all of the fields in a pp file:

for field in iris.fileformats.pp.load(filename):
print(field)

iris.fileformats.pp.save(cube, target, append=False,
field_coords=None)

Use the PP saving rules (and any user rules) to save a cube to a PP file.

:param * cube - A iris.cube.Cube: :param * target - A filename or open file
handle.:

Kwargs:

• append - Whether to start a new file afresh or add the cube(s) to the end of
the file. Only applicable when target is a filename, not a file handle. De-
fault is False.

• field_coords - list of 2 coords or coord names which are to be used for re-
ducing the given cube into 2d slices, which will ultimately determine the x
and y coordinates of the resulting fields. If None, the final two dimensions
are chosen for slicing.

See also iris.io.save(). Note that iris.save() is the preferred method of
saving. This allows a iris.cube.CubeList or a sequence of cubes to be saved to
a PP file.

iris.fileformats.pp.load_cubes(filenames, callback=None, con-
straints=None)

Loads cubes from a list of pp filenames.

Args:

• filenames - list of pp filenames to load

Kwargs:

• constraints - a list of Iris constraints

• callback - a function which can be passed on to iris.io.
run_callback()

Note: The resultant cubes may not be in the order that they are in the file (order is not
preserved when there is a field with orography references)

27.11. iris.fileformats 399

Iris, Release 3.0.1

A generic class for PP fields - not specific to a particular header release number.

A PPField instance can easily access the PP header “words” as attributes with some added
useful capabilities:

for field in iris.fileformats.pp.load(filename):
print(field.lbyr)
print(field.lbuser)
print(field.lbuser[0])
print(field.lbtim)
print(field.lbtim.ia)
print(field.t1)

class iris.fileformats.pp.PPField(header=None)
A generic class for PP fields - not specific to a particular header release
number.

A PPField instance can easily access the PP header “words” as attributes
with some added useful capabilities:

for field in iris.fileformats.pp.load(filename):
print(field.lbyr)
print(field.lbuser)
print(field.lbuser[0])
print(field.lbtim)
print(field.lbtim.ia)
print(field.t1)

__getattr__(key)
This method supports deferred attribute creation, which offers a sig-
nificant loading optimisation, particularly when not all attributes are
referenced and therefore created on the instance.

When an ‘ordinary’ HEADER_DICT attribute is required, its associ-
ated header offset is used to lookup the data value/s from the combined
header longs and floats data cache. The attribute is then set with this
value/s on the instance. Thus future lookups for this attribute will be
optimised, avoiding the __getattr__ lookup mechanism again.

When a ‘special’ HEADER_DICT attribute (leading underscore) is re-
quired, its associated ‘ordinary’ (no leading underscore) header offset
is used to lookup the data value/s from the combined header longs and
floats data cache. The ‘ordinary’ attribute is then set with this value/s
on the instance. This is required as ‘special’ attributes have supporting
property convenience functionality base on the attribute value e.g. see
‘lbpack’ and ‘lbtim’. Note that, for ‘special’ attributes the interface is
via the ‘ordinary’ attribute but the underlying attribute value is stored
within the ‘special’ attribute.

__repr__()
Return a string representation of the PP field.

coord_system()
Return a CoordSystem for this PPField.

Returns Currently, a GeogCS or RotatedGeogCS.

400 Chapter 27. Iris API

Iris, Release 3.0.1

copy()
Returns a deep copy of this PPField.

Returns A copy instance of the PPField.

core_data()

save(file_handle)
Save the PPField to the given file object (typically created with
open()).

to append the field to a file
with open(filename, 'ab') as fh:

a_pp_field.save(fh)

to overwrite/create a file
with open(filename, 'wb') as fh:

a_pp_field.save(fh)

Note: The fields which are automatically calculated are: ‘lbext’,
‘lblrec’ and ‘lbuser[0]’. Some fields are not currently populated, these
are: ‘lbegin’, ‘lbnrec’, ‘lbuser[1]’.

time_unit(time_unit, epoch='epoch')

property calendar
Return the calendar of the field.

property data
The numpy.ndarray representing the multidimensional data of the
pp file

property lbcode

property lbpack

property lbproc

property lbtim

property stash
A stash property giving access to the associated STASH object, now
supporting __eq__

abstract property t1

abstract property t2

property x_bounds

property y_bounds

iris.fileformats.pp.as_fields(cube, field_coords=None, target=None)
Use the PP saving rules (and any user rules) to convert a cube to an iterable of PP fields.

Args:

• cube: A iris.cube.Cube

Kwargs:

27.11. iris.fileformats 401

https://docs.python.org/2.7/library/functions.html#open
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

• field_coords: List of 2 coords or coord names which are to be used for reducing
the given cube into 2d slices, which will ultimately determine the x and y
coordinates of the resulting fields. If None, the final two dimensions are
chosen for slicing.

• target: A filename or open file handle.

iris.fileformats.pp.load_pairs_from_fields(pp_fields)
Convert an iterable of PP fields into an iterable of tuples of (Cubes, PPField).

Args:

• pp_fields: An iterable of iris.fileformats.pp.PPField.

Returns An iterable of iris.cube.Cubes.

This capability can be used to filter out fields before they are passed to the load pipeline,
and amend the cubes once they are created, using PP metadata conditions. Where this
filtering removes a significant number of fields, the speed up to load can be significant:

>>> import iris
>>> from iris.fileformats.pp import load_pairs_from_fields
>>> filename = iris.sample_data_path('E1.2098.pp')
>>> filtered_fields = []
>>> for field in iris.fileformats.pp.load(filename):
... if field.lbproc == 128:
... filtered_fields.append(field)
>>> cube_field_pairs = load_pairs_from_fields(filtered_fields)
>>> for cube, field in cube_field_pairs:
... cube.attributes['lbproc'] = field.lbproc
... print(cube.attributes['lbproc'])
128

This capability can also be used to alter fields before they are passed to the load
pipeline. Fields with out of specification header elements can be cleaned up this way
and cubes created:

>>> filename = iris.sample_data_path('E1.2098.pp')
>>> cleaned_fields = list(iris.fileformats.pp.load(filename))
>>> for field in cleaned_fields:
... if field.lbrel == 0:
... field.lbrel = 3
>>> cubes_field_pairs = list(load_pairs_from_fields(cleaned_
→˓fields))

iris.fileformats.pp.save_pairs_from_cube(cube,
field_coords=None,
target=None)

Use the PP saving rules to convert a cube or iterable of cubes to an iterable of (2D cube,
PP field) pairs.

Args:

• cube: A iris.cube.Cube

Kwargs:

402 Chapter 27. Iris API

Iris, Release 3.0.1

• field_coords: List of 2 coords or coord names which are to be used for reducing
the given cube into 2d slices, which will ultimately determine the x and y
coordinates of the resulting fields. If None, the final two dimensions are
chosen for slicing.

• target: A filename or open file handle.

iris.fileformats.pp.save_fields(fields, target, append=False)
Save an iterable of PP fields to a PP file.

Args:

• fields: An iterable of PP fields.

• target: A filename or open file handle.

Kwargs:

• append: Whether to start a new file afresh or add the cube(s) to the end of the
file. Only applicable when target is a filename, not a file handle. Default is
False.

See also iris.io.save().

A class to hold a single STASH code.

Create instances using:

>>> model = 1
>>> section = 2
>>> item = 3
>>> my_stash = iris.fileformats.pp.STASH(model, section, item)

Access the sub-components via:

>>> my_stash.model
1
>>> my_stash.section
2
>>> my_stash.item
3

String conversion results in the MSI format:

>>> print(iris.fileformats.pp.STASH(1, 16, 203))
m01s16i203

A stash object can be compared directly to its string representation: >>>
iris.fileformats.pp.STASH(1, 0, 4) == ‘m01s0i004’ True

class iris.fileformats.pp.STASH(model, section, item)
Args:

• model A positive integer less than 100, or None.

• section A non-negative integer less than 100, or None.

• item A positive integer less than 1000, or None.

27.11. iris.fileformats 403

Iris, Release 3.0.1

static __new__(cls, model, section, item)
Args:

• model A positive integer less than 100, or None.
• section A non-negative integer less than 100, or None.
• item A positive integer less than 1000, or None.

count(value, /)
Return number of occurrences of value.

static from_msi(msi)
Convert a STASH code MSI string to a STASH instance.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

lbuser3()
Return the lbuser[3] value that this stash represents.

lbuser6()
Return the lbuser[6] value that this stash represents.

property is_valid

property item
Alias for field number 2

property model
Alias for field number 0

property section
Alias for field number 1

iris.fileformats.pp.EARTH_RADIUS
Convert a string or number to a floating point number, if possible.

27.11.10 iris.fileformats.pp_load_rules

In this module:

• convert

iris.fileformats.pp_load_rules.convert(f)
Converts a PP field into the corresponding items of Cube metadata.

Args:

• f: A iris.fileformats.pp.PPField object.

Returns A iris.fileformats.rules.ConversionMetadata
object.

404 Chapter 27. Iris API

Iris, Release 3.0.1

27.11.11 iris.fileformats.pp_save_rules

In this module:

• verify

iris.fileformats.pp_save_rules.verify(cube, field)

27.11.12 iris.fileformats.rules

Generalised mechanisms for metadata translation and cube construction.

In this module:

• aux_factory

• has_aux_factory

• load_cubes

• load_pairs_from_fields

• scalar_cell_method

• scalar_coord

• vector_coord

• ConcreteReferenceTarget

• ConversionMetadata

• Factory

• Loader

• Reference

• ReferenceTarget

iris.fileformats.rules.aux_factory(cube, aux_factory_class)
Return the class:~iris.aux_factory.AuxCoordFactory instance of the specified type
from a cube.

iris.fileformats.rules.has_aux_factory(cube, aux_factory_class)
Try to find an class:~iris.aux_factory.AuxCoordFactory instance of the specified type
on the cube.

iris.fileformats.rules.load_cubes(filenames, user_callback, loader,
filter_function=None)

iris.fileformats.rules.load_pairs_from_fields(fields, con-
verter)

Convert an iterable of fields into an iterable of Cubes using the provided convertor.

Args:

• fields: An iterable of fields.

27.11. iris.fileformats 405

Iris, Release 3.0.1

• convertor: An Iris convertor function, suitable for use with the supplied fields.
See the description in iris.fileformats.rules.Loader.

Returns An iterable of (iris.cube.Cube, field) pairs.

iris.fileformats.rules.scalar_cell_method(cube, method, co-
ord_name)

Try to find the given type of cell method over a single coord with the given name.

iris.fileformats.rules.scalar_coord(cube, coord_name)
Try to find a single-valued coord with the given name.

iris.fileformats.rules.vector_coord(cube, coord_name)
Try to find a one-dimensional, multi-valued coord with the given name.

Everything you need to make a real Cube for a named reference.

class iris.fileformats.rules.ConcreteReferenceTarget(name,
trans-
form=None)

Everything you need to make a real Cube for a named reference.

add_cube(cube)

as_cube()

name
The name used to connect references with references.

transform
An optional transformation to apply to the cubes.

ConversionMetadata(factories, references, standard_name, long_name, units, attributes,
cell_methods, dim_coords_and_dims, aux_coords_and_dims)

class iris.fileformats.rules.ConversionMetadata(_cls,
fac-
to-
ries,
ref-
er-
ences,
stan-
dard_name,
long_name,
units,
at-
tributes,
cell_methods,
dim_coords_and_dims,
aux_coords_and_dims)

Create new instance of ConversionMetadata(factories, refer-
ences, standard_name, long_name, units, attributes, cell_methods,
dim_coords_and_dims, aux_coords_and_dims)

406 Chapter 27. Iris API

Iris, Release 3.0.1

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property attributes
Alias for field number 5

property aux_coords_and_dims
Alias for field number 8

property cell_methods
Alias for field number 6

property dim_coords_and_dims
Alias for field number 7

property factories
Alias for field number 0

property long_name
Alias for field number 3

property references
Alias for field number 1

property standard_name
Alias for field number 2

property units
Alias for field number 4

Factory(factory_class, args)

class iris.fileformats.rules.Factory(_cls, fac-
tory_class, args)

Create new instance of Factory(factory_class, args)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property args
Alias for field number 1

property factory_class
Alias for field number 0

Loader(field_generator, field_generator_kwargs, converter)

class iris.fileformats.rules.Loader(field_generator,
field_generator_kwargs,
converter)

Create a definition of a field-based Cube loader.

Args:

27.11. iris.fileformats 407

Iris, Release 3.0.1

• field_generator A callable that accepts a filename as its first argu-
ment and returns an iterable of field objects.

• field_generator_kwargs Additional arguments to be passed to the
field_generator.

• converter A callable that converts a field object into a Cube.

static __new__(cls, field_generator, field_generator_kwargs,
converter)

Create a definition of a field-based Cube loader.

Args:
• field_generator A callable that accepts a filename as its first ar-

gument and returns an iterable of field objects.
• field_generator_kwargs Additional arguments to be passed to

the field_generator.
• converter A callable that converts a field object into a Cube.

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property converter
Alias for field number 2

property field_generator
Alias for field number 0

property field_generator_kwargs
Alias for field number 1

Convenience class for creating “immutable”, hashable, and ordered classes.

Instance identity is defined by the specific list of attribute names declared in the abstract
attribute “_names”. Subclasses must declare the attribute “_names” as an iterable containing
the names of all the attributes relevant to equality/hash-value/ordering.

Initial values should be set by using :: self._init(self, value1, value2, ..)

Note: It’s the responsibility of the subclass to ensure that the values of its attributes are
themselves hashable.

class iris.fileformats.rules.Reference(name)

ReferenceTarget(name, transform)

class iris.fileformats.rules.ReferenceTarget(_cls,
name,
trans-
form)

Create new instance of ReferenceTarget(name, transform)

count(value, /)
Return number of occurrences of value.

408 Chapter 27. Iris API

Iris, Release 3.0.1

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property name
Alias for field number 0

property transform
Alias for field number 1

27.11.13 iris.fileformats.um

Provides iris loading support for UM Fieldsfile-like file types, and PP.

At present, the only UM file types supported are true FieldsFiles and LBCs. Other types of
UM file may fail to load correctly (or at all).

In this module:

• um_to_pp

• load_cubes

• load_cubes_32bit_ieee

• structured_um_loading

• FieldCollation

iris.fileformats.um.um_to_pp(filename, read_data=False,
word_depth=None)

Extract individual PPFields from within a UM Fieldsfile-like file.

Returns an iterator over the fields contained within the FieldsFile, returned as iris.
fileformats.pp.PPField instances.

Args:

• filename (string): Specify the name of the FieldsFile.

Kwargs:

• read_data (boolean): Specify whether to read the associated PPField data
within the FieldsFile. Default value is False.

Returns Iteration of iris.fileformats.pp.PPField.

For example:

>>> for field in um.um_to_pp(filename):
... print(field)

iris.fileformats.um.load_cubes(filenames, callback, constraints=None,
_loader_kwargs=None)

Loads cubes from filenames of UM fieldsfile-like files.

Args:

• filenames - list of filenames to load

27.11. iris.fileformats 409

Iris, Release 3.0.1

Kwargs:

• callback - a function which can be passed on to iris.io.
run_callback()

Note: The resultant cubes may not be in the order that they are in the file (order is not
preserved when there is a field with orography references).

iris.fileformats.um.load_cubes_32bit_ieee(filenames, callback,
constraints=None)

Loads cubes from filenames of 32bit ieee converted UM fieldsfile-like files.

See also:

load_cubes() for keyword details

iris.fileformats.um.structured_um_loading()
Load cubes from structured UM Fieldsfile and PP files.

“Structured” loading is a streamlined, fast load operation, to be used only on fieldsfiles
or PP files whose fields repeat regularly over the same vertical levels and times (see
full details below).

This method is a context manager which enables an alternative loading mechanism for
‘structured’ UM files, providing much faster load times. Within the scope of the con-
text manager, this affects all standard Iris load functions (load(), load_cube(),
load_cubes() and load_raw()), when loading from UM format files (PP or
fieldsfiles).

For example:

>>> import iris
>>> filepath = iris.sample_data_path('uk_hires.pp')
>>> from iris.fileformats.um import structured_um_loading
>>> with structured_um_loading():
... cube = iris.load_cube(filepath, 'air_potential_
→˓temperature')
...
>>> cube
<iris 'Cube' of air_potential_temperature / (K) (time: 3;
→˓model_level_number: 7; grid_latitude: 204; grid_longitude:
→˓187)>

The results from this are normally equivalent to those generated by iris.load(),
but the operation is substantially faster for input which is structured.

For calls other than load_raw(), the resulting cubes are concatenated over all the
input files, so there is normally just one output cube per phenomenon.

However, actual loaded results are somewhat different from non-structured loads in
many cases, and in a variety of ways. Most commonly, dimension ordering and the
choice of dimension coordinates are often different.

Use of load callbacks:

410 Chapter 27. Iris API

Iris, Release 3.0.1

When a user callback function is used with structured-loading, it is called
in a somewhat different way than in a ‘normal’ load : The callback is
called once for each basic structured cube loaded, which is normally the
whole of one phenomenon from a single input file. In particular, the call-
back’s “field” argument is a FieldCollation, from which “field.fields”
gives a list of PPFields from which that cube was built, and the properties
“field.load_filepath” and “field.load_file_indices” reference the original file
locations of the cube data. The code required is therefore different from a
‘normal’ callback. For an example of this, see this example in the Iris test
code.

Notes on applicability:

For results to be correct and reliable, the input files must conform to the
following requirements :

• the file must contain fields for all possible combinations of the vertical
levels and time points found in the file.

• the fields must occur in a regular repeating order within the file, within
the fields of each phenomenon.

For example: a sequence of fields for NV vertical levels, repeated for
NP different forecast periods, repeated for NT different forecast times.

• all other metadata must be identical across all fields of the same phe-
nomenon.

Each group of fields with the same values of LBUSER4, LBUSER7 and
LBPROC is identified as a separate phenomenon: These groups are pro-
cessed independently and returned as separate result cubes. The need for
a regular sequence of fields applies separately to the fields of each phe-
nomenon, such that different phenomena may have different field structures,
and can be interleaved in any way at all.

Note: At present, fields with different values of ‘LBUSER5’ (pseudo-level)
are also treated internally as different phenomena, yielding a raw cube per
level. The effects of this are not normally noticed, as the resulting multiple
raw cubes merge together again in a ‘normal’ load. However, it is not an
ideal solution as operation is less efficient (in particular, slower) : it is done
to avoid a limitation in the underlying code which would otherwise load
data on pseudo-levels incorrectly. In future, this may be corrected.

Known current shortcomings:

• orography fields may be returned with extra dimensions, e.g. time, where multi-
ple fields exist in an input file.

• if some input files contain a single coordinate value while others contain multiple
values, these will not be merged into a single cube over all input files : Instead,
the single- and multiple-valued sets will typically produce two separate cubes
with overlapping coordinates.

– this can be worked around by loading files individually, or with
load_raw(), and merging/concatenating explicitly.

Note: The resulting time-related coordinates (‘time’, ‘forecast_time’ and ‘fore-

27.11. iris.fileformats 411

https://github.com/SciTools/iris/blob/ddb46f78e54b6ef4110357dfe9cfcffa7d186d90/lib/iris/tests/integration/fast_load/test_fast_load.py#L409
https://github.com/SciTools/iris/blob/ddb46f78e54b6ef4110357dfe9cfcffa7d186d90/lib/iris/tests/integration/fast_load/test_fast_load.py#L409

Iris, Release 3.0.1

cast_period’) may be mapped to shared cube dimensions and in some cases can also
be multidimensional. However, the vertical level information must have a simple one-
dimensional structure, independent of the time points, otherwise an error will be raised.

Note: Where input data does not have a fully regular arrangement, the corresponding
result cube will have a single anonymous extra dimension which indexes over all the
input fields.

This can happen if, for example, some fields are missing; or have slightly different
metadata; or appear out of order in the file.

Warning: Restrictions and limitations:

Any non-regular metadata variation in the input should be strictly avoided, as not
all irregularities are detected, which can cause erroneous results.

Various field header words which can in some cases vary are assumed to have a
constant value throughout a given phenomenon. This is not checked, and can lead
to erroneous results if it is not the case. Header elements of potential concern
include LBTIM, LBCODE, LBVC and LBRSVD4 (ensemble number).

An object representing a group of UM fields with array structure that can be vectorized into
a single cube.

For example:

Suppose we have a set of 28 fields repeating over 7 vertical levels for each of 4 different data
times. If a BasicFieldCollation is created to contain these, it can identify that this is a 4*7
regular array structure.

This BasicFieldCollation will then have the following properties:

• within ‘element_arrays_and_dims’ : Element ‘blev’ have the array shape (7,) and
dims of (1,). Elements ‘t1’ and ‘t2’ have shape (4,) and dims (0,). The other
elements (lbft, lbrsvd4 and lbuser5) all have scalar array values and dims=None.

Note: If no array structure is found, the element values are all either scalar or full-length
1-D vectors.

class iris.fileformats.um.FieldCollation(fields,
filepath)

Args:

• fields (iterable of iris.fileformats.pp.PPField): The
fields in the collation.

• filepath (string): The path of the file the collation is loaded from.

core_data()

property bmdi

property data

412 Chapter 27. Iris API

Iris, Release 3.0.1

property data_field_indices
Field indices of the contained PPFields in the input file.

This records the original file location of the individual data fields con-
tained, within the input datafile.

Returns An integer array of shape self.vector_dims_shape.

property data_filepath

property data_proxy

property element_arrays_and_dims
Value arrays for vector metadata elements.

A dictionary mapping element_name: (value_array, dims).

The arrays are reduced to their minimum dimensions. A scalar array
has an associated ‘dims’ of None (instead of an empty tuple).

property fields

property realised_dtype

property vector_dims_shape
The shape of the array structure.

27.11.14 iris.fileformats.um_cf_map

Provides UM/CF phenomenon translations.

In this module:

• CFName

CFName(standard_name, long_name, units)

class iris.fileformats.um_cf_map.CFName(_cls, stan-
dard_name,
long_name,
units)

Create new instance of CFName(standard_name, long_name, units)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property long_name
Alias for field number 1

property standard_name
Alias for field number 0

property units
Alias for field number 2

A package for converting cubes to and from specific file formats.

In this module:

• FORMAT_AGENT

27.11. iris.fileformats 413

Iris, Release 3.0.1

iris.fileformats.FORMAT_AGENT
The FORMAT_AGENT is responsible for identifying the format of a given URI. New formats can
be added with the add_spec method.

27.12 iris.io

27.12.1 iris.io.format_picker

A module to provide convenient file format identification through a combination of filename
extension and file based magic numbers.

To manage a collection of FormatSpecifications for loading:

import iris.io.format_picker as fp
import matplotlib.pyplot as plt
fagent = fp.FormatAgent()
png_spec = fp.FormatSpecification('PNG image', fp.MagicNumber(8),

0x89504E470D0A1A0A,
handler=lambda filename: plt.

→˓imread(filename),
priority=5
)

fagent.add_spec(png_spec)

To identify a specific format from a file:

with open(png_filename, 'rb') as png_fh:
handling_spec = fagent.get_spec(png_filename, png_fh)

In the example, handling_spec will now be the png_spec previously added to the agent.

Now that a specification has been found, if a handler has been given with the specification,
then the file can be handled:

handler = handling_spec.handler
if handler is None:

raise ValueError('File cannot be handled.')
else:

result = handler(filename)

The calling sequence of handler is dependent on the function given in the original specifica-
tion and can be customised to your project’s needs.

In this module:

• FileElement

• FileExtension

• FormatAgent

• FormatSpecification

• LeadingLine

• MagicNumber

• UriProtocol

414 Chapter 27. Iris API

Iris, Release 3.0.1

Represents a specific aspect of a FileFormat which can be identified using the given element
getter function.

class iris.io.format_picker.FileElement(requires_fh=True)
Constructs a new file element, which may require a file buffer.

Kwargs:

• requires_fh - Whether this FileElement needs a file buffer.

get_element(basename, file_handle)
Called when identifying the element of a file that this FileElement is
representing.

A FileElement that returns the extension from the filename.

class iris.io.format_picker.FileExtension(requires_fh=True)
Constructs a new file element, which may require a file buffer.

Kwargs:

• requires_fh - Whether this FileElement needs a file buffer.

get_element(basename, file_handle)
Called when identifying the element of a file that this FileElement is
representing.

The FormatAgent class is the containing object which is responsible for identifying the format
of a given file by interrogating its children FormatSpecification instances.

Typically a FormatAgent will be created empty and then extended with the FormatAgent.
add_spec() method:

agent = FormatAgent()
agent.add_spec(NetCDF_specification)

Less commonly, this can also be written:

agent = FormatAgent(NetCDF_specification)

class iris.io.format_picker.FormatAgent(format_specs=None)

add_spec(format_spec)
Add a FormatSpecification instance to this agent for format consider-
ation.

get_spec(basename, buffer_obj)
Pick the first FormatSpecification which can handle the given filename
and file/buffer object.

Note: buffer_obj may be None when a seekable file handle is
not feasible (such as over the http protocol). In these cases only the
format specifications which do not require a file handle are tested.

27.12. iris.io 415

Iris, Release 3.0.1

Provides the base class for file type definition.

Every FormatSpecification instance has a name which can be accessed with the
FormatSpecification.name property and a FileElement, such as filename extension
or 32-bit magic number, with an associated value for format identification.

class iris.io.format_picker.FormatSpecification(format_name,
file_element,
file_element_value,
han-
dler=None,
pri-
or-
ity=0,
con-
straint_aware_handler=False)

Constructs a new FormatSpecification given the format_name and particu-
lar FileElements

Args:

• format_name - string name of fileformat being described

• file_element - FileElement instance of the element which identifies
this FormatSpecification

• file_element_value - The value that the file_element should take if a
file matches this FormatSpecification

Kwargs:

• handler - function which will be called when the specification has been identified and is required to handler a format.
If None, then the file can still be identified but no handling can be
done.

• priority - Integer giving a priority for considering this specification
where higher priority means sooner consideration.

property file_element

property file_element_value

property handler
The handler function of this FileFormat. (Read only)

property name
The name of this FileFormat. (Read only)

A FileElement that returns the first line from the file.

class iris.io.format_picker.LeadingLine(requires_fh=True)
Constructs a new file element, which may require a file buffer.

Kwargs:

• requires_fh - Whether this FileElement needs a file buffer.

get_element(basename, file_handle)
Called when identifying the element of a file that this FileElement is
representing.

416 Chapter 27. Iris API

Iris, Release 3.0.1

A FileElement that returns a byte sequence in the file.

class iris.io.format_picker.MagicNumber(num_bytes,
offset=None)

A FileElement that returns a byte sequence in the file.

get_element(basename, file_handle)
Called when identifying the element of a file that this FileElement is
representing.

len_formats = {4: '>L', 8: '>Q'}

A FileElement that returns the “scheme” and “part” from a URI, using decode_uri().

class iris.io.format_picker.UriProtocol
A FileElement that returns the “scheme” and “part” from a URI, using
decode_uri().

get_element(basename, file_handle)
Called when identifying the element of a file that this FileElement is
representing.

Provides an interface to manage URI scheme support in iris.

In this module:

• add_saver

• decode_uri

• expand_filespecs

• find_saver

• load_files

• load_http

• run_callback

• save

iris.io.add_saver(file_extension, new_saver)
Add a custom saver to the Iris session.

Args:

• file_extension: A string such as “pp” or “my_format”.

• new_saver: A function of the form my_saver(cube, target).

See also iris.io.save()

iris.io.decode_uri(uri, default='file')
Decodes a single URI into scheme and scheme-specific parts.

In addition to well-formed URIs, it also supports bare file paths. Both Windows and UNIX style
paths are accepted.

27.12. iris.io 417

Iris, Release 3.0.1

Examples

>>> from iris.io import decode_uri
>>> print(decode_uri('http://www.thing.com:8080/resource?id=a:b'))
('http', '//www.thing.com:8080/resource?id=a:b')

>>> print(decode_uri('file:///data/local/dataZoo/...'))
('file', '///data/local/dataZoo/...')

>>> print(decode_uri('/data/local/dataZoo/...'))
('file', '/data/local/dataZoo/...')

>>> print(decode_uri('file:///C:\data\local\dataZoo\...'))
('file', '///C:\\data\\local\\dataZoo\\...')

>>> print(decode_uri('C:\data\local\dataZoo\...'))
('file', 'C:\\data\\local\\dataZoo\\...')

>>> print(decode_uri('dataZoo/...'))
('file', 'dataZoo/...')

iris.io.expand_filespecs(file_specs)
Find all matching file paths from a list of file-specs.

Args:

• file_specs (iterable of string): File paths which may contain ‘~’ elements or wildcards.

Returns A well-ordered list of matching absolute file paths. If any of the file-specs
match no existing files, an exception is raised.

iris.io.find_saver(filespec)
Find the saver function appropriate to the given filename or extension.

Parameters filespec - A string such as "my_file.pp" or
"PP". (*) –

Returns A save function or None. Save functions can be passed to iris.io.
save().

iris.io.load_files(filenames, callback, constraints=None)
Takes a list of filenames which may also be globs, and optionally a constraint set and a callback
function, and returns a generator of Cubes from the given files.

Note: Typically, this function should not be called directly; instead, the intended interface for
loading is iris.load().

418 Chapter 27. Iris API

Iris, Release 3.0.1

iris.io.load_http(urls, callback)
Takes a list of urls and a callback function, and returns a generator of Cubes from the given URLs.

Note: Typically, this function should not be called directly; instead, the intended interface for
loading is iris.load().

iris.io.run_callback(callback, cube, field, filename)
Runs the callback mechanism given the appropriate arguments.

Args:

• callback: A function to add metadata from the originating field and/or URI which obeys the
following rules:

1. Function signature must be: (cube, field, filename).

2. Modifies the given cube inplace, unless a new cube is returned by the function.

3. If the cube is to be rejected the callback must raise an iris.exceptions.
IgnoreCubeException.

Note: It is possible that this function returns None for certain callbacks, the caller of this function
should handle this case.

iris.io.save(source, target, saver=None, **kwargs)
Save one or more Cubes to file (or other writeable).

Iris currently supports three file formats for saving, which it can recognise by filename extension:

• netCDF - the Unidata network Common Data Format:

– see iris.fileformats.netcdf.save()

• GRIB2 - the WMO GRIdded Binary data format:

– see iris_grib.save_grib2().

• PP - the Met Office UM Post Processing Format:

– see iris.fileformats.pp.save()

A custom saver can be provided to the function to write to a different file format.

Args:

• source: iris.cube.Cube, iris.cube.CubeList or sequence of cubes.

• target: A filename (or writeable, depending on file format). When given a filename or file,
Iris can determine the file format.

Kwargs:

• saver: Optional. Specifies the file format to save. If omitted, Iris will attempt to determine
the format.

If a string, this is the recognised filename extension (where the actual filename may not
have it). Otherwise the value is a saver function, of the form: my_saver(cube,
target) plus any custom keywords. It is assumed that a saver will accept an

27.12. iris.io 419

Iris, Release 3.0.1

append keyword if it’s file format can handle multiple cubes. See also iris.io.
add_saver().

All other keywords are passed through to the saver function; see the relevant saver documentation
for more information on keyword arguments.

Examples:

Save a cube to PP
iris.save(my_cube, "myfile.pp")

Save a cube list to a PP file, appending to the contents of the file
if it already exists
iris.save(my_cube_list, "myfile.pp", append=True)

Save a cube to netCDF, defaults to NETCDF4 file format
iris.save(my_cube, "myfile.nc")

Save a cube list to netCDF, using the NETCDF3_CLASSIC storage option
iris.save(my_cube_list, "myfile.nc", netcdf_format="NETCDF3_CLASSIC")

Warning: Saving a cube whose data has been loaded lazily (if cube.has_lazy_data() returns
True) to the same file it expects to load data from will cause both the data in-memory and the
data on disk to be lost.

cube = iris.load_cube('somefile.nc')
The next line causes data loss in 'somefile.nc' and the cube.
iris.save(cube, 'somefile.nc')

In general, overwriting a file which is the source for any lazily loaded data can result in corrup-
tion. Users should proceed with caution when attempting to overwrite an existing file.

27.13 iris.iterate

Cube functions for iteration in step.

In this module:

• izip

iris.iterate.izip(*cubes, **kwargs)
Return an iterator for iterating over a collection of cubes in step.

If the input cubes have dimensions for which there are no common coordinates, those dimensions
will be treated as orthogonal. The resulting iterator will step through combinations of the associated
coordinates.

Args:

• cubes (iris.cube.Cube): One or more iris.cube.Cube instances over which to
iterate in step. Each cube should be provided as a separate argument e.g. iris.
iterate.izip(cube_a, cube_b, cube_c, ...).

Kwargs:

• coords (string, coord or a list of strings/coords): Coordinate names/coordinates of the de-
sired subcubes (i.e. those that are not iterated over). They must all be orthogonal (i.e.
point to different dimensions).

420 Chapter 27. Iris API

Iris, Release 3.0.1

• ordered (Boolean): If True (default), the order of the coordinates in the resulting subcubes
will match the order of the coordinates in the coords keyword argument. If False, the
order of the coordinates will be preserved and will match that of the input cubes.

Returns An iterator over a collection of tuples that contain the resulting subcubes.

For example:

>>> e_content, e_density = iris.load_cubes(
... iris.sample_data_path('space_weather.nc'),
... ['total electron content', 'electron density'])
>>> for tslice, hslice in iris.iterate.izip(e_content, e_density,
... coords=['grid_latitude',
... 'grid_longitude
→˓']):
... pass

27.14 iris.palette

Load, configure and register color map palettes and initialise color map meta-data mappings.

In this module:

• auto_palette

• cmap_norm

• is_brewer

• SymmetricNormalize

iris.palette.auto_palette(func)
Decorator wrapper function to control the default behaviour of the matplotlib cmap and norm key-
word arguments.

Args:

• func (callable): Callable function to be wrapped by the decorator.

Returns Closure wrapper function.

iris.palette.cmap_norm(cube)
Determine the default matplotlib.colors.LinearSegmentedColormap and iris.
palette.SymmetricNormalize instances associated with the cube.

Args:

• cube (iris.cube.Cube): Source cube to generate default palette from.

Returns Tuple of matplotlib.colors.LinearSegmentedColormap and
iris.palette.SymmetricNormalize

27.14. iris.palette 421

https://matplotlib.org/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap
https://matplotlib.org/api/_as_gen/matplotlib.colors.LinearSegmentedColormap.html#matplotlib.colors.LinearSegmentedColormap

Iris, Release 3.0.1

iris.palette.is_brewer(cmap)
Determine whether the color map is a Cynthia Brewer color map.

Args:

• cmap: The color map instance.

Returns Boolean.

Provides a symmetric normalization class around a given pivot point.

class iris.palette.SymmetricNormalize(pivot, *args, **kwargs)
Provides a symmetric normalization class around a given pivot point.

__call__(value, clip=None)
Normalize value data in the [vmin, vmax] interval into the [0.0, 1.0]
interval and return it.

Parameters

• value – Data to normalize.

• clip (bool) – If None, defaults to self.clip (which de-
faults to False).

Notes

If not already initialized, self.vmin and self.vmax are initialized using
self.autoscale_None(value).

autoscale(A)
Set vmin, vmax to min, max of A.

autoscale_None(A)
If vmin or vmax are not set, use the min/max of A to set them.

inverse(value)

static process_value(value)
Homogenize the input value for easy and efficient normalization.

value can be a scalar or sequence.

Returns

• result (masked array) – Masked array with the same shape as
value.

• is_scalar (bool) – Whether value is a scalar.

422 Chapter 27. Iris API

https://docs.python.org/2.7/library/functions.html#bool

Iris, Release 3.0.1

Notes

Float dtypes are preserved; integer types with two bytes or smaller are converted
to np.float32, and larger types are converted to np.float64. Preserving float32
when possible, and using in-place operations, greatly improves speed for large
arrays.

scaled()
Return whether vmin and vmax are set.

property vmax

property vmin

27.15 iris.pandas

Provide conversion to and from Pandas data structures.

See also: http://pandas.pydata.org/

In this module:

• as_cube

• as_data_frame

• as_series

iris.pandas.as_cube(pandas_array, copy=True, calendars=None)
Convert a Pandas array into an Iris cube.

Parameters pandas_array - A Pandas Series or DataFrame. (*) –

Kwargs:

• copy - Whether to make a copy of the data. Defaults to True.

• calendars - A dict mapping a dimension to a calendar. Required to convert datetime in-
dices/columns.

Example usage:

as_cube(series, calendars={0: cf_units.CALENDAR_360_DAY})
as_cube(data_frame, calendars={1: cf_units.CALENDAR_GREGORIAN})

Note: This function will copy your data by default.

iris.pandas.as_data_frame(cube, copy=True)
Convert a 2D cube to a Pandas DataFrame.

Parameters cube - The cube to convert to a Pandas
DataFrame. (*) –

Kwargs:

• copy - Whether to make a copy of the data. Defaults to True. Must be True for masked
data and some data types (see notes below).

27.15. iris.pandas 423

http://pandas.pydata.org/

Iris, Release 3.0.1

Note: This function will copy your data by default. If you have a large array that cannot be copied,
make sure it is not masked and use copy=False.

Note: Pandas will sometimes make a copy of the array, for example when creating from an int32
array. Iris will detect this and raise an exception if copy=False.

iris.pandas.as_series(cube, copy=True)
Convert a 1D cube to a Pandas Series.

Parameters cube - The cube to convert to a Pandas Series.
(*) –

Kwargs:

• copy - Whether to make a copy of the data. Defaults to True. Must be True for masked
data.

Note: This function will copy your data by default. If you have a large array that cannot be copied,
make sure it is not masked and use copy=False.

27.16 iris.plot

Iris-specific extensions to matplotlib, mimicking the matplotlib.pyplot interface.

See also: matplotlib.

In this module:

• citation

• contour

• contourf

• default_projection

• default_projection_extent

• orography_at_bounds

• orography_at_points

• outline

• pcolor

• pcolormesh

• plot

• points

• quiver

• scatter

424 Chapter 27. Iris API

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/users/index.html#users-guide-index

Iris, Release 3.0.1

• symbols

• PlotDefn

iris.plot.citation(text, figure=None, axes=None)
Add a text citation to a plot.

Places an anchored text citation in the bottom right hand corner of the plot.

Args:

• text: Citation text to be plotted.

Kwargs:

• figure: Target matplotlib.figure.Figure instance. Defaults to the current figure if
none provided.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

iris.plot.contour(cube, *args, **kwargs)
Draws contour lines based on the given Cube.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.contour() for details of other valid keyword arguments.

iris.plot.contourf(cube, *args, **kwargs)
Draws filled contours based on the given Cube.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.contourf() for details of other valid keyword arguments.

iris.plot.default_projection(cube)
Return the primary map projection for the given cube.

Using the returned projection, one can create a cartopy map with:

import matplotlib.pyplot as plt
ax = plt.ax(projection=default_projection(cube))

27.16. iris.plot 425

https://matplotlib.org/api/_as_gen/matplotlib.figure.Figure.html#matplotlib.figure.Figure
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contour.html#matplotlib.pyplot.contour
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.contourf.html#matplotlib.pyplot.contourf

Iris, Release 3.0.1

iris.plot.default_projection_extent(cube, mode=0)
Return the cube’s extents (x0, x1, y0, y1) in its default projection.

Keyword Arguments mode - Either iris.coords.POINT_MODE or
iris.coords.BOUND_MODE. (*) – Triggers whether the extent should be
representative of the cell points, or the limits of the cell’s bounds. The default is
iris.coords.POINT_MODE.

iris.plot.orography_at_bounds(cube, facecolor='#888888', coords=None,
axes=None)

Plots orography defined at cell boundaries from the given Cube.

iris.plot.orography_at_points(cube, facecolor='#888888', coords=None,
axes=None)

Plots orography defined at sample points from the given Cube.

iris.plot.outline(cube, coords=None, color='k', linewidth=None, axes=None)
Draws cell outlines based on the given Cube.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• color: None or mpl color The color of the cell outlines. If None, the matplotlibrc setting
patch.edgecolor is used by default.

• linewidth: None or number The width of the lines showing the cell outlines. If None,
the default width in patch.linewidth in matplotlibrc is used.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

iris.plot.pcolor(cube, *args, **kwargs)
Draws a pseudocolor plot based on the given 2-dimensional Cube.

The cube must have either two 1-dimensional coordinates or two 2-dimensional coordinates with
contiguous bounds to plot the cube against.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

• contiguity_tolerance: The absolute tolerance used when checking for contiguity be-
tween the bounds of the cells. Defaults to None.

426 Chapter 27. Iris API

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

Iris, Release 3.0.1

See matplotlib.pyplot.pcolor() for details of other valid keyword arguments.

iris.plot.pcolormesh(cube, *args, **kwargs)
Draws a pseudocolor plot based on the given 2-dimensional Cube.

The cube must have either two 1-dimensional coordinates or two 2-dimensional coordinates with
contiguous bounds to plot against each other.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

• contiguity_tolerance: The absolute tolerance used when checking for contiguity be-
tween the bounds of the cells. Defaults to None.

See matplotlib.pyplot.pcolormesh() for details of other valid keyword arguments.

iris.plot.plot(*args, **kwargs)
Draws a line plot based on the given cube(s) or coordinate(s).

The first one or two arguments may be cubes or coordinates to plot. Each of the following is valid:

plot a 1d cube against its dimension coordinate
plot(cube)

plot a 1d coordinate
plot(coord)

plot a 1d cube against a given 1d coordinate, with the cube
values on the y-axis and the coordinate on the x-axis
plot(coord, cube)

plot a 1d cube against a given 1d coordinate, with the cube
values on the x-axis and the coordinate on the y-axis
plot(cube, coord)

plot two 1d coordinates against one-another
plot(coord1, coord2)

plot two 1d cubes against one-another
plot(cube1, cube2)

Kwargs:

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.plot() for details of additional valid keyword arguments.

27.16. iris.plot 427

https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolor.html#matplotlib.pyplot.pcolor
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.pcolormesh.html#matplotlib.pyplot.pcolormesh
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot

Iris, Release 3.0.1

iris.plot.points(cube, *args, **kwargs)
Draws sample point positions based on the given Cube.

Kwargs:

• coords: list of Coord objects or coordinate names. Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.scatter() for details of other valid keyword arguments.

iris.plot.quiver(u_cube, v_cube, *args, **kwargs)
Draws an arrow plot from two vector component cubes.

Args:

• u_cube, v_cube [(Cube)] u and v vector components. Must have same shape and units. If
the cubes have geographic coordinates, the values are treated as true distance differen-
tials, e.g. windspeeds, and not map coordinate vectors. The components are aligned
with the North and East of the cube coordinate system.

Kwargs:

• coords: (list of Coord or string) Coordinates or coordinate names. Use the given coordi-
nates as the axes for the plot. The order of the given coordinates indicates which axis
to use for each, where the first element is the horizontal axis of the plot and the second
element is the vertical axis of the plot.

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.quiver() for details of other valid keyword arguments.

iris.plot.scatter(x, y, *args, **kwargs)
Draws a scatter plot based on the given cube(s) or coordinate(s).

Args:

• x: Cube or Coord A cube or a coordinate to plot on the x-axis.

• y: Cube or Coord A cube or a coordinate to plot on the y-axis.

Kwargs:

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

See matplotlib.pyplot.scatter() for details of additional valid keyword arguments.

iris.plot.symbols(x, y, symbols, size, axes=None, units='inches')
Draws fixed-size symbols.

See iris.symbols for available symbols.

Args:

428 Chapter 27. Iris API

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.quiver.html#matplotlib.pyplot.quiver
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.scatter.html#matplotlib.pyplot.scatter

Iris, Release 3.0.1

• x: iterable The x coordinates where the symbols will be plotted.

• y: iterable The y coordinates where the symbols will be plotted.

• symbols: iterable The symbols (from iris.symbols) to plot.

• size: float The symbol size in units.

Kwargs:

• axes: the matplotlib.axes.Axes to use for drawing. Defaults to the current axes if
none provided.

• units: [‘inches’, ‘points’] The unit for the symbol size.

PlotDefn(coords, transpose)

class iris.plot.PlotDefn(_cls, coords, transpose)
Create new instance of PlotDefn(coords, transpose)

count(value, /)
Return number of occurrences of value.

index(value, start=0, stop=9223372036854775807, /)
Return first index of value.

Raises ValueError if the value is not present.

property coords
Alias for field number 0

property transpose
Alias for field number 1

27.17 iris.quickplot

High-level plotting extensions to iris.plot.

These routines work much like their iris.plot counterparts, but they automatically add a plot title,
axis titles, and a colour bar when appropriate.

See also: matplotlib.

In this module:

• contour

• contourf

• outline

• pcolor

• pcolormesh

• plot

• points

• scatter

27.17. iris.quickplot 429

https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://matplotlib.org/users/index.html#users-guide-index

Iris, Release 3.0.1

iris.quickplot.contour(cube, *args, **kwargs)
Draws contour lines on a labelled plot based on the given Cube.

With the basic call signature, contour “level” values are chosen automatically:

contour(cube)

Supply a number to use N automatically chosen levels:

contour(cube, N)

Supply a sequence V to use explicitly defined levels:

contour(cube, V)

See iris.plot.contour() for details of valid keyword arguments.

iris.quickplot.contourf(cube, *args, **kwargs)
Draws filled contours on a labelled plot based on the given Cube.

With the basic call signature, contour “level” values are chosen automatically:

contour(cube)

Supply a number to use N automatically chosen levels:

contour(cube, N)

Supply a sequence V to use explicitly defined levels:

contour(cube, V)

See iris.plot.contourf() for details of valid keyword arguments.

iris.quickplot.outline(cube, coords=None, color='k', linewidth=None, axes=None)
Draws cell outlines on a labelled plot based on the given Cube.

Kwargs:

• coords: list of Coord objects or coordinate names Use the given coordinates as the axes
for the plot. The order of the given coordinates indicates which axis to use for each,
where the first element is the horizontal axis of the plot and the second element is the
vertical axis of the plot.

• color: None or mpl color The color of the cell outlines. If None, the matplotlibrc setting
patch.edgecolor is used by default.

• linewidth: None or number The width of the lines showing the cell outlines. If None, the
default width in patch.linewidth in matplotlibrc is used.

iris.quickplot.pcolor(cube, *args, **kwargs)
Draws a labelled pseudocolor plot based on the given Cube.

See iris.plot.pcolor() for details of valid keyword arguments.

430 Chapter 27. Iris API

Iris, Release 3.0.1

iris.quickplot.pcolormesh(cube, *args, **kwargs)
Draws a labelled pseudocolour plot based on the given Cube.

See iris.plot.pcolormesh() for details of valid keyword arguments.

iris.quickplot.plot(*args, **kwargs)
Draws a labelled line plot based on the given cube(s) or coordinate(s).

See iris.plot.plot() for details of valid arguments and keyword arguments.

iris.quickplot.points(cube, *args, **kwargs)
Draws sample point positions on a labelled plot based on the given Cube.

See iris.plot.points() for details of valid keyword arguments.

iris.quickplot.scatter(x, y, *args, **kwargs)
Draws a labelled scatter plot based on the given cubes or coordinates.

See iris.plot.scatter() for details of valid arguments and keyword arguments.

27.18 iris.std_names

This file contains a dictionary of standard value names that are mapped to another dictionary of other
standard name attributes. Currently only the canonical_unit exists in these attribute dictionaries.

This file is automatically generated. Do not edit this file by hand.

The file will be generated during a standard build/installation:

python setup.py build
python setup.py install

Also, the file can be re-generated in the source distribution via:

python setup.py std_names

Or for more control (e.g. to use an alternative XML file) via:

python tools/generate_std_names.py XML_FILE MODULE_FILE

In this module:

27.19 iris.symbols

Contains symbol definitions for use with iris.plot.symbols().

In this module:

• CLOUD_COVER

iris.symbols.CLOUD_COVER
A dictionary mapping WMO cloud cover codes to their corresponding symbol.

See http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf Part II,
Appendix II.4, Graphical Representation of Data, Analyses and Forecasts

27.18. iris.std_names 431

http://www.wmo.int/pages/prog/www/DPFS/documents/485_Vol_I_en_colour.pdf

Iris, Release 3.0.1

27.20 iris.time

Time handling.

In this module:

• PartialDateTime

A PartialDateTime object specifies values for some subset of the calendar/time fields (year, month,
hour, etc.) for comparing with datetime.datetime-like instances.

Comparisons are defined against any other class with all of the attributes: year, month, day, hour, minute,
and second. Notably, this includes datetime.datetime and cftime.datetime. Comparison
also extends to the microsecond attribute for classes, such as datetime.datetime, which define it.

A PartialDateTime object is not limited to any particular calendar, so no restriction is placed on the
range of values allowed in its component fields. Thus, it is perfectly legitimate to create an instance as:
PartialDateTime(month=2, day=30).

class iris.time.PartialDateTime(year=None, month=None, day=None,
hour=None, minute=None, sec-
ond=None, microsecond=None)

Allows partial comparisons against datetime-like objects.

Args:

• year (int):

• month (int):

• day (int):

• hour (int):

• minute (int):

• second (int):

• microsecond (int):

For example, to select any days of the year after the 3rd of April:

>>> from iris.time import PartialDateTime
>>> import datetime
>>> pdt = PartialDateTime(month=4, day=3)
>>> datetime.datetime(2014, 4, 1) > pdt
False
>>> datetime.datetime(2014, 4, 5) > pdt
True
>>> datetime.datetime(2014, 5, 1) > pdt
True
>>> datetime.datetime(2015, 2, 1) > pdt
False

day
The day number as an integer, or None.

hour
The hour number as an integer, or None.

microsecond
The microsecond number as an integer, or None.

432 Chapter 27. Iris API

https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime
https://docs.python.org/2.7/library/datetime.html#datetime.datetime

Iris, Release 3.0.1

minute
The minute number as an integer, or None.

month
The month number as an integer, or None.

second
The second number as an integer, or None.

timetuple = None

year
The year number as an integer, or None.

27.21 iris.util

Miscellaneous utility functions.

In this module:

• approx_equal

• array_equal

• as_compatible_shape

• between

• broadcast_to_shape

• clip_string

• column_slices_generator

• create_temp_filename

• delta

• demote_dim_coord_to_aux_coord

• describe_diff

• equalise_attributes

• file_is_newer_than

• find_discontiguities

• format_array

• guess_coord_axis

• is_regular

• mask_cube

• monotonic

• new_axis

• points_step

• promote_aux_coord_to_dim_coord

• regular_step

• reverse

27.21. iris.util 433

Iris, Release 3.0.1

• rolling_window

• squeeze

• unify_time_units

iris.util.approx_equal(a, b, max_absolute_error=1e-10, max_relative_error=1e-10)
Returns whether two numbers are almost equal, allowing for the finite precision of floating point
numbers.

iris.util.array_equal(array1, array2, withnans=False)
Returns whether two arrays have the same shape and elements.

Args:

• array1, array2 (arraylike): args to be compared, after normalising with np.asarray().

Kwargs:

• withnans (bool): When unset (default), the result is False if either input contains NaN
points. This is the normal floating-point arithmetic result. When set, return True if
inputs contain the same value in all elements, _including_ any NaN values.

This provides much the same functionality as numpy.array_equal(), but with additional sup-
port for arrays of strings and NaN-tolerant operation.

iris.util.as_compatible_shape(src_cube, target_cube)
Return a cube with added length one dimensions to match the dimensionality and dimension order-
ing of target_cube.

This function can be used to add the dimensions that have been collapsed, aggregated or sliced out,
promoting scalar coordinates to length one dimension coordinates where necessary. It operates by
matching coordinate metadata to infer the dimensions that need modifying, so the provided cubes
must have coordinates with the same metadata (see iris.common.CoordMetadata).

Note: This function will load and copy the data payload of src_cube.

Deprecated since version 3.0.0: Instead use Resolve. For example, rather than
calling as_compatible_shape(src_cube, target_cube) replace with
Resolve(src_cube, target_cube)(target_cube.core_data()).

Args:

• src_cube: An instance of iris.cube.Cube with missing dimensions.

• target_cube: An instance of iris.cube.Cube with the desired dimensionality.

Returns A instance of iris.cube.Cube with the same dimensionality as tar-
get_cube but with the data and coordinates from src_cube suitably reshaped to
fit.

iris.util.between(lh, rh, lh_inclusive=True, rh_inclusive=True)
Provides a convenient way of defining a 3 element inequality such as a < number < b.

Arguments:

434 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal

Iris, Release 3.0.1

• lh The left hand element of the inequality

• rh The right hand element of the inequality

Keywords:

• lh_inclusive - boolean Affects the left hand comparison operator to use in the inequality.
True for <= false for <. Defaults to True.

• rh_inclusive - boolean Same as lh_inclusive but for right hand operator.

For example:

between_3_and_6 = between(3, 6)
for i in range(10):

print(i, between_3_and_6(i))

between_3_and_6 = between(3, 6, rh_inclusive=False)
for i in range(10):

print(i, between_3_and_6(i))

iris.util.broadcast_to_shape(array, shape, dim_map)
Broadcast an array to a given shape.

Each dimension of the array must correspond to a dimension in the given shape. Striding is used to
repeat the array until it matches the desired shape, returning repeated views on the original array. If
you need to write to the resulting array, make a copy first.

Args:

• array (numpy.ndarray-like) An array to broadcast.

• shape (list, tuple etc.): The shape the array should be broadcast to.

• dim_map (list, tuple etc.): A mapping of the dimensions of array to their correspond-
ing element in shape. dim_map must be the same length as the number of dimensions
in array. Each element of dim_map corresponds to a dimension of array and its value
provides the index in shape which the dimension of array corresponds to, so the first
element of dim_map gives the index of shape that corresponds to the first dimension of
array etc.

Examples:

Broadcasting an array of shape (2, 3) to the shape (5, 2, 6, 3) where the first dimension of the
array corresponds to the second element of the desired shape and the second dimension of the array
corresponds to the fourth element of the desired shape:

a = np.array([[1, 2, 3], [4, 5, 6]])
b = broadcast_to_shape(a, (5, 2, 6, 3), (1, 3))

Broadcasting an array of shape (48, 96) to the shape (96, 48, 12):

a is an array of shape (48, 96)
result = broadcast_to_shape(a, (96, 48, 12), (1, 0))

27.21. iris.util 435

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

iris.util.clip_string(the_str, clip_length=70, rider='...')
Returns a clipped version of the string based on the specified clip length and whether or not any
graceful clip points can be found.

If the string to be clipped is shorter than the specified clip length, the original string is returned.

If the string is longer than the clip length, a graceful point (a space character) after the clip length is
searched for. If a graceful point is found the string is clipped at this point and the rider is added. If
no graceful point can be found, then the string is clipped exactly where the user requested and the
rider is added.

Args:

• the_str The string to be clipped

• clip_length The length in characters that the input string should be clipped to. Defaults to a
preconfigured value if not specified.

• rider A series of characters appended at the end of the returned string to show it has been
clipped. Defaults to a preconfigured value if not specified.

Returns The string clipped to the required length with a rider appended. If the clip
length was greater than the original string, the original string is returned unal-
tered.

iris.util.column_slices_generator(full_slice, ndims)
Given a full slice full of tuples, return a dictionary mapping old data dimensions to new and a
generator which gives the successive slices needed to index correctly (across columns).

This routine deals with the special functionality for tuple based indexing e.g. [0, (3, 5), :, (1, 6, 8)]
by first providing a slice which takes the non tuple slices out first i.e. [0, :, :, :] then subsequently
iterates through each of the tuples taking out the appropriate slices i.e. [(3, 5), :, :] followed by [:,
:, (1, 6, 8)]

This method was developed as numpy does not support the direct approach of [(3, 5), : , (1, 6, 8)]
for column based indexing.

iris.util.create_temp_filename(suffix='')
Return a temporary file name.

Parameters suffix - Optional filename extension. (*) –

iris.util.delta(ndarray, dimension, circular=False)
Calculates the difference between values along a given dimension.

Args:

• ndarray: The array over which to do the difference.

• dimension: The dimension over which to do the difference on ndarray.

• circular: If not False then return n results in the requested dimension with the delta between
the last and first element included in the result otherwise the result will be of length n-1
(where n is the length of ndarray in the given dimension’s direction)

If circular is numeric then the value of circular will be added to the last element of the
given dimension if the last element is negative, otherwise the value of circular will be
subtracted from the last element.

436 Chapter 27. Iris API

Iris, Release 3.0.1

The example below illustrates the process:

original array -180, -90, 0, 90
delta (with circular=360): 90, 90, 90, -270+360

Note: The difference algorithm implemented is forward difference:

>>> import numpy as np
>>> import iris.util
>>> original = np.array([-180, -90, 0, 90])
>>> iris.util.delta(original, 0)
array([90, 90, 90])
>>> iris.util.delta(original, 0, circular=360)
array([90, 90, 90, 90])

iris.util.demote_dim_coord_to_aux_coord(cube, name_or_coord)
Demotes a dimension coordinate on the cube to an auxiliary coordinate.

The DimCoord is demoted to an auxiliary coordinate on the cube. The dimension of the cube that
was associated with the DimCoord becomes anonymous. The class of the coordinate is left as
DimCoord, it is not recast as an AuxCoord instance.

Args:

• cube An instance of iris.cube.Cube

• name_or_coord: Either

(a) An instance of iris.coords.DimCoord

or

(b) the standard_name, long_name, or var_name of an instance of an instance
of iris.coords.DimCoord.

For example:

>>> print cube
air_temperature / (K) (time: 12; latitude: 73; longitude: 96)

Dimension coordinates:
time x - -
latitude - x -
longitude - - x

Auxiliary coordinates:
year x - -

>>> demote_dim_coord_to_aux_coord(cube, 'time')
>>> print cube
air_temperature / (K) (-- : 12; latitude: 73; longitude: 96)

Dimension coordinates:
latitude - x -
longitude - - x

Auxiliary coordinates:
time x - -
year x - -

27.21. iris.util 437

Iris, Release 3.0.1

iris.util.describe_diff(cube_a, cube_b, output_file=None)
Prints the differences that prevent compatibility between two cubes, as defined by iris.cube.
Cube.is_compatible().

Args:

• cube_a: An instance of iris.cube.Cube or iris.cube.CubeMetadata.

• cube_b: An instance of iris.cube.Cube or iris.cube.CubeMetadata.

• output_file: A file or file-like object to receive output. Defaults to sys.stdout.

See also:

iris.cube.Cube.is_compatible()

Note: Compatibility does not guarantee that two cubes can be merged. Instead, this function
is designed to provide a verbose description of the differences in metadata between two cubes.
Determining whether two cubes will merge requires additional logic that is beyond the scope of this
function.

iris.util.equalise_attributes(cubes)
Delete cube attributes that are not identical over all cubes in a group.

This function simply deletes any attributes which are not the same for all the given cubes. The
cubes will then have identical attributes. The given cubes are modified in-place.

Args:

• cubes (iterable of iris.cube.Cube): A collection of cubes to compare and adjust.

iris.util.file_is_newer_than(result_path, source_paths)
Return whether the ‘result’ file has a later modification time than all of the ‘source’ files.

If a stored result depends entirely on known ‘sources’, it need only be re-built when one of them
changes. This function can be used to test that by comparing file timestamps.

Args:

• result_path (string): The filepath of a file containing some derived result data.

• source_paths (string or iterable of strings): The path(s) to the original datafiles used to
make the result. May include wildcards and ‘~’ expansions (like Iris load paths), but
not URIs.

Returns

True if all the sources are older than the result, else False.

If any of the file paths describes no existing files, an exception will be raised.

Note: There are obvious caveats to using file timestamps for this, as correct usage depends on how
the sources might change. For example, a file could be replaced by one of the same name, but an
older timestamp.

438 Chapter 27. Iris API

Iris, Release 3.0.1

If wildcards and ‘~’ expansions are used, this introduces even more uncertainty, as then you cannot
even be sure that the resulting list of file names is the same as the originals. For example, some files
may have been deleted or others added.

Note: The result file may often be a pickle file. In that case, it also depends on the relevant
module sources, so extra caution is required. Ideally, an additional check on iris.__version__ is
advised.

iris.util.find_discontiguities(cube, rel_tol=1e-05, abs_tol=1e-08)
Searches coord for discontiguities in the bounds array, returned as a boolean array (True where
discontiguities are present).

Args:

• cube (iris.cube.Cube): The cube to be checked for discontinuities in its ‘x’ and ‘y’ coordi-
nates.

Kwargs:

• rel_tol (float): The relative equality tolerance to apply in coordinate bounds checking.

• abs_tol (float): The absolute value tolerance to apply in coordinate bounds checking.

Returns:

• result (numpy.ndarray of bool) : true/false map of which cells in the cube XY grid have
discontiguities in the coordinate points array.

This can be used as the input array for iris.util.mask_cube().

Examples:

Find any unknown discontiguities in your cube's x and y arrays:
discontiguities = iris.util.find_discontiguities(cube)

Pass the resultant boolean array to `iris.util.mask_cube`
with a cube slice; this will use the boolean array to mask
any discontiguous data points before plotting:
masked_cube_slice = iris.util.mask_cube(cube[0], discontiguities)

Plot the masked cube slice:
iplt.pcolormesh(masked_cube_slice)

iris.util.format_array(arr)
Returns the given array as a string, using the python builtin str function on a piecewise basis.

Useful for xml representation of arrays.

For customisations, use the numpy.core.arrayprint directly.

iris.util.guess_coord_axis(coord)
Returns a “best guess” axis name of the coordinate.

Heuristic categorisation of the coordinate into either label ‘T’, ‘Z’, ‘Y’, ‘X’ or None.

Args:

27.21. iris.util 439

https://docs.python.org/2.7/library/pickle.html#module-pickle

Iris, Release 3.0.1

• coord: The iris.coords.Coord.

Returns ‘T’, ‘Z’, ‘Y’, ‘X’, or None.

iris.util.is_regular(coord)
Determine if the given coord is regular.

iris.util.mask_cube(cube, points_to_mask)
Masks any cells in the data array which correspond to cells marked True in the points_to_mask
array.

Args:

• cube (iris.cube.Cube): A 2-dimensional instance of iris.cube.Cube.

• points_to_mask (numpy.ndarray of bool): A 2d boolean array of Truth values representing
points to mask in the x and y arrays of the cube.

Returns:

• result (iris.cube.Cube): A cube whose data array is masked at points specified by input ar-
ray.

iris.util.monotonic(array, strict=False, return_direction=False)
Return whether the given 1d array is monotonic.

Note that, the array must not contain missing data.

Kwargs:

• strict (boolean) Flag to enable strict monotonic checking

• return_direction (boolean) Flag to change return behaviour to return (monotonic_status,
direction). Direction will be 1 for positive or -1 for negative. The direction is meaning-
less if the array is not monotonic.

Returns:

• monotonic_status (boolean) Whether the array was monotonic.

If the return_direction flag was given then the returned value will be:

(monotonic_status, direction)

iris.util.new_axis(src_cube, scalar_coord=None)
Create a new axis as the leading dimension of the cube, promoting a scalar coordinate if specified.

Args:

• src_cube (iris.cube.Cube) Source cube on which to generate a new axis.

Kwargs:

• scalar_coord (iris.coord.Coord or ‘string’) Scalar coordinate to promote to a di-
mension coordinate.

Returns A new iris.cube.Cube instance with one extra leading dimension
(length 1).

440 Chapter 27. Iris API

Iris, Release 3.0.1

For example:

>>> cube.shape
(360, 360)
>>> ncube = iris.util.new_axis(cube, 'time')
>>> ncube.shape
(1, 360, 360)

iris.util.points_step(points)
Determine whether a NumPy array has a regular step.

iris.util.promote_aux_coord_to_dim_coord(cube, name_or_coord)
Promotes an AuxCoord on the cube to a DimCoord. This AuxCoord must be associated with a sin-
gle cube dimension. If the AuxCoord is associated with a dimension that already has a DimCoord,
that DimCoord gets demoted to an AuxCoord.

Args:

• cube An instance of iris.cube.Cube

• name_or_coord: Either

(a) An instance of iris.coords.AuxCoord

or

(b) the standard_name, long_name, or var_name of an instance of an instance
of iris.coords.AuxCoord.

For example:

>>> print cube
air_temperature / (K) (time: 12; latitude: 73; longitude: 96)

Dimension coordinates:
time x - -
latitude - x -
longitude - - x

Auxiliary coordinates:
year x - -

>>> promote_aux_coord_to_dim_coord(cube, 'year')
>>> print cube
air_temperature / (K) (year: 12; latitude: 73; longitude: 96)

Dimension coordinates:
year x - -
latitude - x -
longitude - - x

Auxiliary coordinates:
time x - -

iris.util.regular_step(coord)
Return the regular step from a coord or fail.

iris.util.reverse(cube_or_array, coords_or_dims)
Reverse the cube or array along the given dimensions.

Args:

27.21. iris.util 441

Iris, Release 3.0.1

• cube_or_array: iris.cube.Cube or numpy.ndarray The cube or array to reverse.

• coords_or_dims: int, str, iris.coords.Coord or sequence of these Identify one or
more dimensions to reverse. If cube_or_array is a numpy array, use int or a sequence of
ints, as in the examples below. If cube_or_array is a Cube, a Coord or coordinate name
(or sequence of these) may be specified instead.

>>> import numpy as np
>>> a = np.arange(24).reshape(2, 3, 4)
>>> print(a)
[[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]]

[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]

>>> print(reverse(a, 1))
[[[8 9 10 11]
[4 5 6 7]
[0 1 2 3]]

[[20 21 22 23]
[16 17 18 19]
[12 13 14 15]]]

>>> print(reverse(a, [1, 2]))
[[[11 10 9 8]
[7 6 5 4]
[3 2 1 0]]

[[23 22 21 20]
[19 18 17 16]
[15 14 13 12]]]

iris.util.rolling_window(a, window=1, step=1, axis=- 1)
Make an ndarray with a rolling window of the last dimension

Args:

• a [array_like] Array to add rolling window to

Kwargs:

• window [int] Size of rolling window

• step [int] Size of step between rolling windows

• axis [int] Axis to take the rolling window over

Returns Array that is a view of the original array with an added dimension of the size
of the given window at axis + 1.

Examples:

>>> x = np.arange(10).reshape((2, 5))
>>> rolling_window(x, 3)
array([[[0, 1, 2], [1, 2, 3], [2, 3, 4]],

[[5, 6, 7], [6, 7, 8], [7, 8, 9]]])

442 Chapter 27. Iris API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

Calculate rolling mean of last dimension:

>>> np.mean(rolling_window(x, 3), -1)
array([[1., 2., 3.],

[6., 7., 8.]])

iris.util.squeeze(cube)
Removes any dimension of length one. If it has an associated DimCoord or AuxCoord, this becomes
a scalar coord.

Args:

• cube (iris.cube.Cube) Source cube to remove length 1 dimension(s) from.

Returns A new iris.cube.Cube instance without any dimensions of length 1.

For example:

>>> cube.shape
(1, 360, 360)
>>> ncube = iris.util.squeeze(cube)
>>> ncube.shape
(360, 360)

iris.util.unify_time_units(cubes)
Performs an in-place conversion of the time units of all time coords in the cubes in a given iterable.
One common epoch is defined for each calendar found in the cubes to prevent units being defined
with inconsistencies between epoch and calendar.

Each epoch is defined from the first suitable time coordinate found in the input cubes.

Arg:

• cubes: An iterable containing iris.cube.Cube instances.

A package for handling multi-dimensional data and associated metadata.

Note: The Iris documentation has further usage information, including a user guide which should be the first port of
call for new users.

The functions in this module provide the main way to load and/or save your data.

The load() function provides a simple way to explore data from the interactive Python prompt. It will convert the
source data into Cubes, and combine those cubes into higher-dimensional cubes where possible.

The load_cube() and load_cubes() functions are similar to load(), but they raise an exception if the number
of cubes is not what was expected. They are more useful in scripts, where they can provide an early sanity check on
incoming data.

The load_raw() function is provided for those occasions where the automatic combination of cubes into higher-
dimensional cubes is undesirable. However, it is intended as a tool of last resort! If you experience a problem with the
automatic combination process then please raise an issue with the Iris developers.

To persist a cube to the file-system, use the save() function.

All the load functions share very similar arguments:

27.21. iris.util 443

Iris, Release 3.0.1

• uris: Either a single filename/URI expressed as a string, or an iterable of filenames/URIs.

Filenames can contain ~ or ~user abbreviations, and/or Unix shell-style wildcards (e.g. * and ?). See the
standard library function os.path.expanduser() and module fnmatch for more details.

• constraints: Either a single constraint, or an iterable of constraints. Each constraint can be either a string, an
instance of iris.Constraint, or an instance of iris.AttributeConstraint. If the constraint
is a string it will be used to match against cube.name().

For example:

Load air temperature data.
load_cube(uri, 'air_temperature')

Load data with a specific model level number.
load_cube(uri, iris.Constraint(model_level_number=1))

Load data with a specific STASH code.
load_cube(uri, iris.AttributeConstraint(STASH='m01s00i004'))

• callback: A function to add metadata from the originating field and/or URI which obeys the following rules:

1. Function signature must be: (cube, field, filename).

2. Modifies the given cube inplace, unless a new cube is returned by the function.

3. If the cube is to be rejected the callback must raise an iris.exceptions.
IgnoreCubeException.

For example:

def callback(cube, field, filename):
Extract ID from filenames given as: <prefix>__<exp_id>
experiment_id = filename.split('__')[1]
experiment_coord = iris.coords.AuxCoord(

experiment_id, long_name='experiment_id')
cube.add_aux_coord(experiment_coord)

In this module:

• load

• load_cube

• load_cubes

• load_raw

• save

• Constraint

• AttributeConstraint

• NameConstraint

• sample_data_path

• site_configuration

• Future

• FUTURE

• IrisDeprecation

444 Chapter 27. Iris API

https://docs.python.org/2.7/library/os.path.html#os.path.expanduser
https://docs.python.org/2.7/library/fnmatch.html#module-fnmatch

Iris, Release 3.0.1

iris.load(uris, constraints=None, callback=None)
Loads any number of Cubes for each constraint.

For a full description of the arguments, please see the module documentation for iris.

Args:
• uris: One or more filenames/URIs.

Kwargs:
• constraints: One or more constraints.
• callback: A modifier/filter function.

Returns An iris.cube.CubeList. Note that there is no inherent order to this iris.cube.
CubeList and it should be treated as if it were random.

iris.load_cube(uris, constraint=None, callback=None)
Loads a single cube.

For a full description of the arguments, please see the module documentation for iris.

Args:
• uris: One or more filenames/URIs.

Kwargs:
• constraints: A constraint.
• callback: A modifier/filter function.

Returns An iris.cube.Cube.

iris.load_cubes(uris, constraints=None, callback=None)
Loads exactly one Cube for each constraint.

For a full description of the arguments, please see the module documentation for iris.

Args:
• uris: One or more filenames/URIs.

Kwargs:
• constraints: One or more constraints.
• callback: A modifier/filter function.

Returns An iris.cube.CubeList. Note that there is no inherent order to this iris.cube.
CubeList and it should be treated as if it were random.

iris.load_raw(uris, constraints=None, callback=None)
Loads non-merged cubes.

This function is provided for those occasions where the automatic combination of cubes into higher-dimensional
cubes is undesirable. However, it is intended as a tool of last resort! If you experience a problem with the
automatic combination process then please raise an issue with the Iris developers.

For a full description of the arguments, please see the module documentation for iris.

Args:
• uris: One or more filenames/URIs.

Kwargs:
• constraints: One or more constraints.
• callback: A modifier/filter function.

Returns An iris.cube.CubeList.

27.21. iris.util 445

Iris, Release 3.0.1

iris.save(source, target, saver=None, **kwargs)
Save one or more Cubes to file (or other writeable).

Iris currently supports three file formats for saving, which it can recognise by filename extension:
• netCDF - the Unidata network Common Data Format:

– see iris.fileformats.netcdf.save()
• GRIB2 - the WMO GRIdded Binary data format:

– see iris_grib.save_grib2().
• PP - the Met Office UM Post Processing Format:

– see iris.fileformats.pp.save()
A custom saver can be provided to the function to write to a different file format.

Args:
• source: iris.cube.Cube, iris.cube.CubeList or sequence of cubes.
• target: A filename (or writeable, depending on file format). When given a filename or file, Iris can

determine the file format.
Kwargs:

• saver: Optional. Specifies the file format to save. If omitted, Iris will attempt to determine the format.

If a string, this is the recognised filename extension (where the actual filename may not have it).
Otherwise the value is a saver function, of the form: my_saver(cube, target) plus any
custom keywords. It is assumed that a saver will accept an append keyword if it’s file format can
handle multiple cubes. See also iris.io.add_saver().

All other keywords are passed through to the saver function; see the relevant saver documentation for more
information on keyword arguments.

Examples:

Save a cube to PP
iris.save(my_cube, "myfile.pp")

Save a cube list to a PP file, appending to the contents of the file
if it already exists
iris.save(my_cube_list, "myfile.pp", append=True)

Save a cube to netCDF, defaults to NETCDF4 file format
iris.save(my_cube, "myfile.nc")

Save a cube list to netCDF, using the NETCDF3_CLASSIC storage option
iris.save(my_cube_list, "myfile.nc", netcdf_format="NETCDF3_CLASSIC")

Warning: Saving a cube whose data has been loaded lazily (if cube.has_lazy_data() returns True) to the
same file it expects to load data from will cause both the data in-memory and the data on disk to be lost.

cube = iris.load_cube('somefile.nc')
The next line causes data loss in 'somefile.nc' and the cube.
iris.save(cube, 'somefile.nc')

In general, overwriting a file which is the source for any lazily loaded data can result in corruption. Users
should proceed with caution when attempting to overwrite an existing file.

Constraints are the mechanism by which cubes can be pattern matched and filtered according to specific criteria.

446 Chapter 27. Iris API

Iris, Release 3.0.1

Once a constraint has been defined, it can be applied to cubes using the Constraint.extract() method.

class iris.Constraint(name=None, cube_func=None, coord_values=None, **kwargs)
Creates a new instance of a Constraint which can be used for filtering cube loading or cube list
extraction.

Args:

• name: string or None If a string, it is used as the name to match against the
~iris.cube.Cube.names property.

• cube_func: callable or None If a callable, it must accept a Cube as its first and only argu-
ment and return either True or False.

• coord_values: dict or None If a dict, it must map coordinate name to the condition on the
associated coordinate.

• **kwargs: The remaining keyword arguments are converted to coordinate constraints. The
name of the argument gives the name of a coordinate, and the value of the argument is
the condition to meet on that coordinate:

Constraint(model_level_number=10)

Coordinate level constraints can be of several types:

– string, int or float - the value of the coordinate to match. e.g.
model_level_number=10

– list of values - the possible values that the coordinate may have to match. e.g.
model_level_number=[10, 12]

– callable - a function which accepts a iris.coords.Cell instance as its first
and only argument returning True or False if the value of the Cell is desired. e.g.
model_level_number=lambda cell: 5 < cell < 10

The user guide covers cube much of constraining in detail, however an example which uses all of
the features of this class is given here for completeness:

Constraint(name='air_potential_temperature',
cube_func=lambda cube: cube.units == 'kelvin',
coord_values={'latitude':lambda cell: 0 < cell < 90},
model_level_number=[10, 12])
& Constraint(ensemble_member=2)

Constraint filtering is performed at the cell level. For further details on how cell comparisons are
performed see iris.coords.Cell.

extract(cube)
Return the subset of the given cube which matches this constraint, else return None.

Provides a simple Cube-attribute based Constraint.

class iris.AttributeConstraint(**attributes)
Example usage:

iris.AttributeConstraint(STASH='m01s16i004')

iris.AttributeConstraint(
STASH=lambda stash: str(stash).endswith('i005'))

27.21. iris.util 447

Iris, Release 3.0.1

Note: Attribute constraint names are case sensitive.

extract(cube)
Return the subset of the given cube which matches this constraint, else return None.

Provides a simple Cube name based Constraint.

class iris.NameConstraint(standard_name='none', long_name='none',
var_name='none', STASH='none')

Provides a simple Cube name based Constraint, which matches against each of the names
provided, which may be either standard name, long name, NetCDF variable name and/or the STASH
from the attributes dictionary.

The name constraint will only succeed if all of the provided names match.

Kwargs:

• standard_name: A string or callable representing the standard name to match against.

• long_name: A string or callable representing the long name to match against.

• var_name: A string or callable representing the NetCDF variable name to match against.

• STASH: A string or callable representing the UM STASH code to match against.

Note: The default value of each of the keyword arguments is the string “none”, rather than the
singleton None, as None may be a legitimate value to be matched against e.g., to constrain against
all cubes where the standard_name is not set, then use standard_name=None.

Returns:

• Boolean

Example usage:

iris.NameConstraint(long_name='air temp', var_name=None)

iris.NameConstraint(long_name=lambda name: 'temp' in name)

iris.NameConstraint(standard_name='air_temperature',
STASH=lambda stash: stash.item == 203)

extract(cube)
Return the subset of the given cube which matches this constraint, else return None.

iris.sample_data_path(*path_to_join)
Given the sample data resource, returns the full path to the file.

Note: This function is only for locating files in the iris sample data collection (installed separately from iris).
It is not needed or appropriate for general file access.

448 Chapter 27. Iris API

Iris, Release 3.0.1

iris.site_configuration
Iris site configuration dictionary.

Run-time configuration controller.

class iris.Future
A container for run-time options controls.

To adjust the values simply update the relevant attribute from within your code. For example:

iris.FUTURE.example_future_flag = False

If Iris code is executed with multiple threads, note the values of these options are thread-specific.

Note: iris.FUTURE.example_future_flag does not exist. It is provided as an example because
there are currently no flags in iris.Future.

context(**kwargs)
Return a context manager which allows temporary modification of the option values for the
active thread.

On entry to the with statement, all keyword arguments are applied to the Future object. On
exit from the with statement, the previous state is restored.

For example::

with iris.FUTURE.context(example_future_flag=False): # . . . code that expects
some past behaviour

Note: iris.FUTURE.example_future_flag does not exist and is provided only as an example
since there are currently no flags in Future.

deprecated_options = {}

iris.FUTURE
Object containing all the Iris run-time options.

An Iris deprecation warning.

class iris.IrisDeprecation
An Iris deprecation warning.

with_traceback()
Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

args

27.21. iris.util 449

Iris, Release 3.0.1

450 Chapter 27. Iris API

CHAPTER

TWENTYEIGHT

WHAT’S NEW IN IRIS

These “What’s new” pages describe the important changes between major Iris versions.

28.1 v3.0.1 (27 Jan 2021)

This document explains the changes made to Iris for this release (View all changes.)

v3.0.1 Patches

The patches included in this release include:

Internal

• @bjlittle gracefully promote formula terms within aux_factory that have units of unknown to units of
1 (dimensionless), where the formula term must have dimensionless units. Without this graceful treatment of
units the resulting Cubewill not contain the expected auxiliary factory, and the associated derived coordinate
will be missing. (PR #3965)

Release Highlights

The highlights for this major release of Iris include:

• We’ve finally dropped support for Python 2, so welcome to Iris 3 and Python 3!

• We’ve extended our coverage of the CF Conventions and Metadata by introducing support for CF Ancillary
Data and Quality Flags,

• Lazy regridding is now available for several regridding schemes,

• Managing and manipulating metadata within Iris is now easier and more consistent thanks to the introduction of
a new common metadata API,

• Cube arithmetic has been significantly improved with regards to extended broadcasting, auto-transposition and
a more lenient behaviour towards handling metadata and coordinates,

• Our documentation has been refreshed, restructured, revitalised and rehosted on readthedocs,

• It’s now easier than ever to install Iris as a user or a developer, and the newly revamped developers guide walks
you though how you can get involved and contribute to Iris,

• Also, this is a major release of Iris, so please be aware of the incompatible changes and deprecations.

And finally, get in touch with us on GitHub if you have any issues or feature requests for improving Iris. Enjoy!

451

https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3965
https://cfconventions.org/
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://readthedocs.org/
https://github.com/SciTools/iris/issues/new/choose

Iris, Release 3.0.1

28.1.1 Announcements

• Congratulations to @bouweandela, @jvegasbsc, and @zklaus who recently became Iris core developers. They
bring a wealth of expertise to the team, and are using Iris to underpin ESMValTool - “A community diagnostic
and performance metrics tool for routine evaluation of Earth system models in CMIP”. Welcome aboard!

• Congratulations also goes to @jonseddon who recently became an Iris core developer. We look forward to
seeing more of your awesome contributions!

28.1.2 Features

• @MoseleyS greatly enhanced the nimrod module to provide richer meta-data translation when loading
Nimrod data into cubes. This covers most known operational use-cases. (PR #3647)

• @stephenworsley improved the handling of iris.coords.CellMeasures in the Cube statistical oper-
ations collapsed(), aggregated_by() and rolling_window(). These previously removed every
CellMeasure attached to the cube. Now, a CellMeasure will only be removed if it is associated with an
axis over which the statistic is being run. (PR #3549)

• @stephenworsley, @pp-mo and @abooton added support for CF Ancillary Data variables. These are created
as iris.coords.AncillaryVariable, and appear as components of cubes much like AuxCoords,
with the new Cube methods add_ancillary_variable(), remove_ancillary_variable(),
ancillary_variable(), ancillary_variables() and ancillary_variable_dims(). They
are loaded from and saved to NetCDF-CF files. Special support for Quality Flags is also provided, to ensure
they load and save with appropriate units. (PR #3800)

• @bouweandela implemented lazy regridding for the Linear, Nearest, and AreaWeighted regridding
schemes. (PR #3701)

• @bjlittle added logging support within iris.analysis.maths, iris.common.metadata, and iris.
common.resolve. Each module defines a logging.Logger instance called logger with a default
level of INFO. To enable DEBUG logging use logger.setLevel("DEBUG"). (PR #3785)

• @bjlittle added the iris.common.resolve module, which provides infrastructure to support the analysis,
identification and combination of metadata common between two Cube operands into a single resultant Cube
that will be auto-transposed, and with the appropriate broadcast shape. (PR #3785)

• @bjlittle added the common metadata API, which provides a unified treatment of metadata across Iris, and
allows users to easily manage and manipulate their metadata in a consistent way. (PR #3785)

• @bjlittle added lenient metadata support, to allow users to control strict or lenient metadata equivalence, dif-
ference and combination. (PR #3785)

• @bjlittle added lenient cube maths support and resolved several long standing major issues with cube arithmetic
regarding a more robust treatment of cube broadcasting, cube dimension auto-transposition, and preservation of
common metadata and coordinates during cube math operations. Resolves Issue #1887, Issue #2765, and Issue
#3478. (PR #3785)

• @pp-mo and @TomekTrzeciak enhanced collapse() to allow a 1-D weights array when collapsing over a
single dimension. Previously, the weights had to be the same shape as the whole cube, which could cost a lot of
memory in some cases. The 1-D form is supported by most weighted array statistics (such as np.average()),
so this now works with the corresponding Iris schemes (in that case, MEAN). (PR #3943)

452 Chapter 28. What’s New in Iris

https://github.com/bouweandela
https://github.com/jvegasbsc
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool
https://github.com/jonseddon
https://github.com/MoseleyS
https://github.com/SciTools/iris/pull/3647
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3549
https://github.com/stephenworsley
https://github.com/pp-mo
https://github.com/abooton
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://github.com/SciTools/iris/pull/3800
https://github.com/bouweandela
https://github.com/SciTools/iris/pull/3701
https://github.com/bjlittle
https://docs.python.org/3/library/logging.html
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/issues/1887
https://github.com/SciTools/iris/issues/2765
https://github.com/SciTools/iris/issues/3478
https://github.com/SciTools/iris/issues/3478
https://github.com/SciTools/iris/pull/3785
https://github.com/pp-mo
https://github.com/TomekTrzeciak
https://github.com/SciTools/iris/pull/3943

Iris, Release 3.0.1

28.1.3 Bugs Fixed

• @stephenworsley fixed remove_coord() to now also remove derived coordinates by removing
aux_factories. (PR #3641)

• @jonseddon fixed isinstance(cube, collections.Iterable) to now behave as expected if a
Cube is iterated over, while also ensuring that TypeError is still raised. (Fixed by setting the __iter__()
method in Cube to None). (PR #3656)

• @stephenworsley enabled cube concatenation along an axis shared by cell measures; these cell measures are
now concatenated together in the resulting cube. Such a scenario would previously cause concatenation to
inappropriately fail. (PR #3566)

• @stephenworsley newly included CellMeasures in Cube copy operations. Previously copying a Cube
would ignore any attached CellMeasure. (PR #3546)

• @bjlittle set a CellMeasure’s measure attribute to have a default value of area. Previously, the measure
was provided as a keyword argument to CellMeasure with a default value of None, which caused a
TypeError when no measure was provided, since area or volume are the only accepted values. (PR
#3533)

• @trexfeathers set all plot types in iris.plot to now use matplotlib.dates.date2num to format date/time co-
ordinates for use on a plot axis (previously pcolor() and pcolormesh() did not include this behaviour).
(PR #3762)

• @trexfeathers changed date/time axis labels in iris.quickplot to now always be based on the epoch used
in matplotlib.dates.date2num (previously would take the unit from a time coordinate, if present, even though the
coordinate’s value had been changed via date2num). (PR #3762)

• @pp-mo newly included attributes of cell measures in NETCDF-CF file loading; they were previously being
discarded. They are now available on the CellMeasure in the loaded Cube. (PR #3800)

• @pp-mo fixed the netcdf loader to now handle any grid-mapping variables with missing false_easting and
false_northing properties, which was previously failing for some coordinate systems. See Issue #3629.
(PR #3804)

• @stephenworsley changed the way tick labels are assigned from string coords. Previously, the first tick label
would occasionally be duplicated. This also removes the use of Matplotlib’s deprecated IndexFormatter.
(PR #3857)

• @znicholls fixed _title() to only check units.is_time_reference if the units symbol is not used.
(PR #3902)

• @rcomer fixed a bug whereby numpy array type attributes on a cube’s coordinates could prevent printing it. See
Issue #3921. (PR #3922)

28.1.4 Incompatible Changes

• @pp-mo rationalised CubeList extraction methods:

The former method iris.cube.CubeList.extract_strict, and the strict keyword of the
extract() method have been removed, and are replaced by the new routines extract_cube() and
extract_cubes(). The new routines perform the same operation, but in a style more like other Iris
functions such as load_cube() and load_cubes(). Unlike strict extraction, the type of return value
is now completely consistent : extract_cube() always returns a Cube, and extract_cubes() always
returns an iris.cube.CubeList of a length equal to the number of constraints. (PR #3715)

• @pp-mo removed the former function iris.analysis.coord_comparison. (PR #3562)

28.1. v3.0.1 (27 Jan 2021) 453

https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3641
https://github.com/jonseddon
https://github.com/SciTools/iris/pull/3656
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3566
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3546
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3533
https://github.com/SciTools/iris/pull/3533
https://github.com/trexfeathers
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://github.com/SciTools/iris/pull/3762
https://github.com/trexfeathers
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://github.com/SciTools/iris/pull/3762
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3800
https://github.com/pp-mo
https://github.com/SciTools/iris/issues/3629
https://github.com/SciTools/iris/pull/3804
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3857
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902
https://github.com/rcomer
https://github.com/SciTools/iris/issues/3921
https://github.com/SciTools/iris/pull/3922
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3715
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3562

Iris, Release 3.0.1

• @bjlittle moved the iris.experimental.equalise_cubes.equalise_attributes() function
from the iris.experimental module into the iris.util module. Please use the iris.util.
equalise_attributes() function instead. (PR #3527)

• @bjlittle removed the module iris.experimental.concatenate. In v1.6.0 the experimental
concatenate functionality was moved to the iris.cube.CubeList.concatenate() method. Since
then, calling the iris.experimental.concatenate.concatenate() function raised an exception.
(PR #3523)

• @stephenworsley changed the default units of DimCoord and AuxCoord from “1” to “unknown”. (PR
#3795)

• @stephenworsley changed Iris objects loaded from NetCDF-CF files to have units='unknown' where the
corresponding NetCDF variable has no units property. Previously these cases defaulted to units='1'.
This affects loading of coordinates whose file variable has no “units” attribute (not valid, under CF units rules):
These will now have units of “unknown”, rather than “1”, which may prevent the creation of a hybrid vertical
coordinate. While these cases used to “work”, this was never really correct behaviour. (PR #3795)

• @SimonPeatman added attribute var_name to coordinates created by the iris.analysis.
trajectory.interpolate() function. This prevents duplicate coordinate errors in certain circum-
stances. (PR #3718)

• @bjlittle aligned the iris.analysis.maths.apply_ufunc() with the rest of the iris.analysis.
maths API by changing its keyword argument from other_cube to other. (PR #3785)

• @bjlittle changed the iris.analysis.maths.IFunc.__call__() to ignore any surplus other key-
word argument for a data_func that requires only one argument. This aligns the behaviour of iris.
analysis.maths.IFunc.__call__() with apply_ufunc(). Previously a ValueError exception
was raised. (PR #3785)

28.1.5 Deprecations

• @stephenworsley removed the deprecated iris.Future flags cell_date_time_objects,
netcdf_promote, netcdf_no_unlimited and clip_latitudes. (PR #3459)

• @stephenworsley changed iris.fileformats.pp.PPField.lbproc to be an int. The deprecated
attributes flag1, flag2 etc. have been removed from it. (PR #3461)

• @bjlittle deprecated as_compatible_shape() in preference for Resolve e.g., Resolve(src,
tgt)(tgt.core_data()). The as_compatible_shape() function will be removed in a future re-
lease of Iris. (PR #3892)

28.1.6 Dependencies

• @stephenworsley, @trexfeathers and @bjlittle removed Python2 support, modernising the codebase by
switching to exclusive Python3 support. (PR #3513)

• @bjlittle improved the developer set up process. Configuring Iris and Installing From Source (Developers) as a
developer with all the required package dependencies is now easier with our curated conda environment YAML
files. (PR #3812)

• @stephenworsley pinned Iris to require Dask >=2.0. (PR #3460)

• @stephenworsley and @trexfeathers pinned Iris to require Cartopy >=0.18, in order to remain compatible
with the latest version of Matplotlib. (PR #3762)

454 Chapter 28. What’s New in Iris

https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3527
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3523
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3795
https://github.com/SciTools/iris/pull/3795
https://github.com/stephenworsley
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#units
https://github.com/SciTools/iris/pull/3795
https://github.com/SimonPeatman
https://github.com/SciTools/iris/pull/3718
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3459
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3461
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3892
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3513
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3812
https://github.com/stephenworsley
https://github.com/dask/dask
https://github.com/SciTools/iris/pull/3460
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/SciTools/cartopy
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3762

Iris, Release 3.0.1

• @bjlittle unpinned Iris to use the latest version of Matplotlib. Supporting Iris for both Python2 and
Python3 had resulted in pinning our dependency on Matplotlib at v2.x. But this is no longer necessary
now that Python2 support has been dropped. (PR #3468)

• @stephenworsley and @trexfeathers unpinned Iris to use the latest version of Proj. (PR #3762)

• @stephenworsley and @trexfeathers removed GDAL from the extensions dependency group. We no longer
consider it to be an extension. (PR #3762)

28.1.7 Documentation

• @tkknight moved the Tri-Polar Grid Projected Plotting from the general part of the gallery to oceanography.
(PR #3761)

• @tkknight updated documentation to use a modern sphinx theme and be served from https://scitools-iris.
readthedocs.io/en/latest/. (PR #3752)

• @bjlittle added support for the black code formatter. This is now automatically checked on GitHub PRs, re-
placing the older, unittest-based iris.tests.test_coding_standards.TestCodeFormat. Black
provides automatic code format correction for most IDEs. See the new developer guide section on Code For-
matting. (PR #3518)

• @tkknight and @trexfeathers refreshed the Contributing a “What’s New” Entry for the What’s New in Iris.
This includes always creating the latest what’s new page so it appears on the latest documentation at https:
//scitools-iris.readthedocs.io/en/latest/whatsnew. This resolves Issue #2104, Issue #3451, Issue #3818, Issue
#3837. Also updated the Maintainer Steps to follow when making a release. (PR #3769, PR #3838, PR #3843)

• @tkknight enabled the PDF creation of the documentation on the Read the Docs service. The PDF may be
accessed by clicking on the version at the bottom of the side bar, then selecting PDF from the Downloads
section. (PR #3765)

• @stephenworsley added a warning to the iris.analysis.cartography.project() function regard-
ing its behaviour on projections with non-rectangular boundaries. (PR #3762)

• @stephenworsley added the Combining Units section to the user guide to clarify how Units are handled during
cube arithmetic. (PR #3803)

• @tkknight overhauled the Further Topics including information on getting involved in becoming a contributor
and general structure of the guide. This resolves Issue #2170, Issue #2331, Issue #3453, Issue #314, Issue
#2902. (PR #3852)

• @rcomer added argument descriptions to the DimCoord docstring. (PR #3681)

• @tkknight added two url’s to be ignored for the make linkcheck. This will ensure the Iris github project
is not repeatedly hit during the linkcheck for issues and pull requests as it can result in connection refused and
thus travis-ci job failures. For more information on linkcheck, see Testing. (PR #3873)

• @tkknight enabled the napolean package that is used by sphinx to cater for the existing google style docstrings
and to also allow for numpy docstrings. This resolves Issue #3841. (PR #3871)

• @tkknight configured sphinx-build to promote warnings to errors when building the documentation via
make html. This will minimise technical debt accruing for the documentation. (PR #3877)

• @tkknight updated Installing Iris to include a reference to Windows Subsystem for Linux. (PR #3885)

• @tkknight updated the Iris Documentation homepage to include panels so the links are more visible to users.
This uses the sphinx-panels extension. (PR #3884)

• @bjlittle created the Further topics section and included documentation for Metadata, Lenient Metadata, and
Lenient Cube Maths. (PR #3890)

28.1. v3.0.1 (27 Jan 2021) 455

https://github.com/bjlittle
https://matplotlib.org/
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3468
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/OSGeo/PROJ
https://github.com/SciTools/iris/pull/3762
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/SciTools/iris/pull/3762
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3761
https://github.com/tkknight
https://scitools-iris.readthedocs.io/en/latest/
https://scitools-iris.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3752
https://github.com/bjlittle
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3518
https://github.com/tkknight
https://github.com/trexfeathers
https://scitools-iris.readthedocs.io/en/latest/whatsnew
https://scitools-iris.readthedocs.io/en/latest/whatsnew
https://github.com/SciTools/iris/issues/2104
https://github.com/SciTools/iris/issues/3451
https://github.com/SciTools/iris/issues/3818
https://github.com/SciTools/iris/issues/3837
https://github.com/SciTools/iris/issues/3837
https://github.com/SciTools/iris/pull/3769
https://github.com/SciTools/iris/pull/3838
https://github.com/SciTools/iris/pull/3843
https://github.com/tkknight
https://scitools-iris.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3765
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3762
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3803
https://github.com/tkknight
https://github.com/SciTools/iris/issues/2170
https://github.com/SciTools/iris/issues/2331
https://github.com/SciTools/iris/issues/3453
https://github.com/SciTools/iris/issues/314
https://github.com/SciTools/iris/issues/2902
https://github.com/SciTools/iris/issues/2902
https://github.com/SciTools/iris/pull/3852
https://github.com/rcomer
https://github.com/SciTools/iris/pull/3681
https://github.com/tkknight
https://travis-ci.org/github/SciTools/iris
https://github.com/SciTools/iris/pull/3873
https://github.com/tkknight
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/sphinxcontrib.napoleon.html
https://www.sphinx-doc.org/en/master/
https://github.com/numpy/numpy
https://github.com/SciTools/iris/issues/3841
https://github.com/SciTools/iris/pull/3871
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3877
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3885
https://github.com/tkknight
https://sphinx-panels.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3884
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3890

Iris, Release 3.0.1

• @jonseddon updated the CF version of the netCDF saver in the Saving Iris Cubes section and in the equivalent
function docstring. (PR #3925)

• @bjlittle applied Title Case Capitalization to the documentation. (PR #3940)

28.1.8 Internal

• @pp-mo and @lbdreyer removed all Iris test dependencies on iris-grib by transferring all relevant content to the
iris-grib repository. (PR #3662, PR #3663, PR #3664, PR #3665, PR #3666, PR #3669, PR #3670, PR #3671,
PR #3672, PR #3742, PR #3746)

• @lbdreyer and @pp-mo overhauled the handling of dimensional metadata to remove duplication. (PR #3422,
PR #3551)

• @trexfeathers simplified the standard license header for all files, which removes the need to repeatedly update
year numbers in the header. (PR #3489)

• @stephenworsley changed the numerical values in tests involving the Robinson projection due to improvements
made in Proj. (PR #3762) (see also Proj#1292 and Proj#2151)

• @stephenworsley changed tests to account for more detailed descriptions of projections in GDAL. (PR #3762)
(see also GDAL#1185)

• @stephenworsley changed tests to account for GDAL now saving fill values for data without masked points.
(PR #3762)

• @trexfeathers changed every graphics test that includes Cartopy’s coastlines to account for new adaptive coast-
line scaling. (PR #3762) (see also Cartopy#1105)

• @trexfeathers changed graphics tests to account for some new default grid-line spacing in Cartopy. (PR #3762)
(see also Cartopy#1117)

• @trexfeathers added additional acceptable graphics test targets to account for very minor changes in Matplotlib
version 3.3 (colormaps, fonts and axes borders). (PR #3762)

• @rcomer corrected the Matplotlib backend in Iris tests to ignore matplotlib.rcdefaults, instead the tests will
always use agg. (PR #3846)

• @bjlittle migrated the black support from 19.10b0 to 20.8b1. (PR #3866)

• @lbdreyer updated the CF standard name table to the latest version: v75. (PR #3867)

• @bjlittle added PEP 517 and PEP 518 support for building and installing Iris, in particular to handle the PyKE
package dependency. (PR #3812)

• @bjlittle added metadata support for comparing attributes dictionaries that contain numpy arrays using
xxHash, an extremely fast non-cryptographic hash algorithm, running at RAM speed limits.

• @bjlittle added the iris.tests.assertDictEqual method to override unittest.TestCase.
assertDictEqual() in order to cope with testing metadata attributes dictionary comparison where
the value of a key may be a numpy array. (PR #3785)

• @bjlittle added the get_logger() function for creating a generic logging.Logger with a logging.
StreamHandler and custom logging.Formatter. (PR #3785)

• @owena11 identified and optimised a bottleneck in FieldsFile header loading due to the use of numpy.
fromfile(). (PR #3791)

• @znicholls added a test for plotting with the label being taken from the unit’s symbol, see
test_pcolormesh_str_symbol() (PR #3902).

• @znicholls made step_over_diffs() robust to hyphens (-) in the input path (i.e. the result_dir
argument) (PR #3902).

456 Chapter 28. What’s New in Iris

https://github.com/jonseddon
https://github.com/SciTools/iris/pull/3925
https://github.com/bjlittle
https://apastyle.apa.org/style-grammar-guidelines/capitalization/title-case
https://github.com/SciTools/iris/pull/3940
https://github.com/pp-mo
https://github.com/lbdreyer
https://github.com/SciTools/iris-grib
https://github.com/SciTools/iris-grib
https://github.com/SciTools/iris/pull/3662
https://github.com/SciTools/iris/pull/3663
https://github.com/SciTools/iris/pull/3664
https://github.com/SciTools/iris/pull/3665
https://github.com/SciTools/iris/pull/3666
https://github.com/SciTools/iris/pull/3669
https://github.com/SciTools/iris/pull/3670
https://github.com/SciTools/iris/pull/3671
https://github.com/SciTools/iris/pull/3672
https://github.com/SciTools/iris/pull/3742
https://github.com/SciTools/iris/pull/3746
https://github.com/lbdreyer
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3422
https://github.com/SciTools/iris/pull/3551
https://github.com/trexfeathers
https://github.com/SciTools/iris/pull/3489
https://github.com/stephenworsley
https://github.com/OSGeo/PROJ
https://github.com/SciTools/iris/pull/3762
https://github.com/OSGeo/PROJ/pull/1292
https://github.com/OSGeo/PROJ/pull/2151
https://github.com/stephenworsley
https://github.com/OSGeo/gdal
https://github.com/SciTools/iris/pull/3762
https://github.com/OSGeo/gdal/pull/1185
https://github.com/stephenworsley
https://github.com/OSGeo/gdal
https://github.com/SciTools/iris/pull/3762
https://github.com/trexfeathers
https://scitools.org.uk/cartopy/docs/latest/matplotlib/geoaxes.html?highlight=coastlines#cartopy.mpl.geoaxes.GeoAxes.coastlines
https://github.com/SciTools/iris/pull/3762
https://github.com/SciTools/cartopy/pull/1105
https://github.com/trexfeathers
https://github.com/SciTools/cartopy
https://github.com/SciTools/iris/pull/3762
https://github.com/SciTools/cartopy/pull/1117
https://github.com/trexfeathers
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3762
https://github.com/rcomer
https://matplotlib.org/3.1.1/api/matplotlib_configuration_api.html?highlight=rcdefaults#matplotlib.rcdefaults
https://github.com/SciTools/iris/pull/3846
https://github.com/bjlittle
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3866
https://github.com/lbdreyer
https://cfconventions.org/Data/cf-standard-names/75/build/cf-standard-name-table.html
https://github.com/SciTools/iris/pull/3867
https://github.com/bjlittle
https://www.python.org/dev/peps/pep-0517
https://www.python.org/dev/peps/pep-0518
https://pypi.org/project/scitools-pyke/
https://github.com/SciTools/iris/pull/3812
https://github.com/bjlittle
https://github.com/numpy/numpy
https://github.com/Cyan4973/xxHash
https://github.com/bjlittle
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertDictEqual
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertDictEqual
https://github.com/numpy/numpy
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://docs.python.org/2.7/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/2.7/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/2.7/library/logging.html#logging.Formatter
https://github.com/SciTools/iris/pull/3785
https://github.com/owena11
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://github.com/SciTools/iris/pull/3791
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902

Iris, Release 3.0.1

• @bjlittle migrated the CIaaS from travis-ci to cirrus-ci, and removed stickler-ci support. (PR #3928)

• @bjlittle introduced nox as a common and easy entry-point for test automation. It can be used both from cirrus-
ci in the cloud, and locally by the developer to run the Iris tests, the doc-tests, the gallery doc-tests, and lint Iris
with flake8 and black. (PR #3928)

28.2 v3.0 (25 Jan 2021)

This document explains the changes made to Iris for this release (View all changes.)

Release Highlights

The highlights for this major release of Iris include:

• We’ve finally dropped support for Python 2, so welcome to Iris 3 and Python 3!

• We’ve extended our coverage of the CF Conventions and Metadata by introducing support for CF Ancillary
Data and Quality Flags,

• Lazy regridding is now available for several regridding schemes,

• Managing and manipulating metadata within Iris is now easier and more consistent thanks to the introduction of
a new common metadata API,

• Cube arithmetic has been significantly improved with regards to extended broadcasting, auto-transposition and
a more lenient behaviour towards handling metadata and coordinates,

• Our documentation has been refreshed, restructured, revitalised and rehosted on readthedocs,

• It’s now easier than ever to install Iris as a user or a developer, and the newly revamped developers guide walks
you though how you can get involved and contribute to Iris,

• Also, this is a major release of Iris, so please be aware of the incompatible changes and deprecations.

And finally, get in touch with us on GitHub if you have any issues or feature requests for improving Iris. Enjoy!

28.2.1 Announcements

• Congratulations to @bouweandela, @jvegasbsc, and @zklaus who recently became Iris core developers. They
bring a wealth of expertise to the team, and are using Iris to underpin ESMValTool - “A community diagnostic
and performance metrics tool for routine evaluation of Earth system models in CMIP”. Welcome aboard!

• Congratulations also goes to @jonseddon who recently became an Iris core developer. We look forward to
seeing more of your awesome contributions!

28.2.2 Features

• @MoseleyS greatly enhanced the nimrod module to provide richer meta-data translation when loading
Nimrod data into cubes. This covers most known operational use-cases. (PR #3647)

• @stephenworsley improved the handling of iris.coords.CellMeasures in the Cube statistical oper-
ations collapsed(), aggregated_by() and rolling_window(). These previously removed every
CellMeasure attached to the cube. Now, a CellMeasure will only be removed if it is associated with an
axis over which the statistic is being run. (PR #3549)

• @stephenworsley, @pp-mo and @abooton added support for CF Ancillary Data variables. These are created
as iris.coords.AncillaryVariable, and appear as components of cubes much like AuxCoords,
with the new Cube methods add_ancillary_variable(), remove_ancillary_variable(),

28.2. v3.0 (25 Jan 2021) 457

https://github.com/bjlittle
https://travis-ci.org/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://stickler-ci.com/
https://github.com/SciTools/iris/pull/3928
https://github.com/bjlittle
https://nox.thea.codes/en/stable/
https://cirrus-ci.com/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://flake8.pycqa.org/en/stable/
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3928
https://cfconventions.org/
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://readthedocs.org/
https://github.com/SciTools/iris/issues/new/choose
https://github.com/bouweandela
https://github.com/jvegasbsc
https://github.com/zklaus
https://github.com/ESMValGroup/ESMValTool
https://github.com/jonseddon
https://github.com/MoseleyS
https://github.com/SciTools/iris/pull/3647
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3549
https://github.com/stephenworsley
https://github.com/pp-mo
https://github.com/abooton
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#ancillary-data

Iris, Release 3.0.1

ancillary_variable(), ancillary_variables() and ancillary_variable_dims(). They
are loaded from and saved to NetCDF-CF files. Special support for Quality Flags is also provided, to ensure
they load and save with appropriate units. (PR #3800)

• @bouweandela implemented lazy regridding for the Linear, Nearest, and AreaWeighted regridding
schemes. (PR #3701)

• @bjlittle added logging support within iris.analysis.maths, iris.common.metadata, and iris.
common.resolve. Each module defines a logging.Logger instance called logger with a default
level of INFO. To enable DEBUG logging use logger.setLevel("DEBUG"). (PR #3785)

• @bjlittle added the iris.common.resolve module, which provides infrastructure to support the analysis,
identification and combination of metadata common between two Cube operands into a single resultant Cube
that will be auto-transposed, and with the appropriate broadcast shape. (PR #3785)

• @bjlittle added the common metadata API, which provides a unified treatment of metadata across Iris, and
allows users to easily manage and manipulate their metadata in a consistent way. (PR #3785)

• @bjlittle added lenient metadata support, to allow users to control strict or lenient metadata equivalence, dif-
ference and combination. (PR #3785)

• @bjlittle added lenient cube maths support and resolved several long standing major issues with cube arithmetic
regarding a more robust treatment of cube broadcasting, cube dimension auto-transposition, and preservation of
common metadata and coordinates during cube math operations. Resolves Issue #1887, Issue #2765, and Issue
#3478. (PR #3785)

• @pp-mo and @TomekTrzeciak enhanced collapse() to allow a 1-D weights array when collapsing over a
single dimension. Previously, the weights had to be the same shape as the whole cube, which could cost a lot of
memory in some cases. The 1-D form is supported by most weighted array statistics (such as np.average()),
so this now works with the corresponding Iris schemes (in that case, MEAN). (PR #3943)

28.2.3 Bugs Fixed

• @stephenworsley fixed remove_coord() to now also remove derived coordinates by removing
aux_factories. (PR #3641)

• @jonseddon fixed isinstance(cube, collections.Iterable) to now behave as expected if a
Cube is iterated over, while also ensuring that TypeError is still raised. (Fixed by setting the __iter__()
method in Cube to None). (PR #3656)

• @stephenworsley enabled cube concatenation along an axis shared by cell measures; these cell measures are
now concatenated together in the resulting cube. Such a scenario would previously cause concatenation to
inappropriately fail. (PR #3566)

• @stephenworsley newly included CellMeasures in Cube copy operations. Previously copying a Cube
would ignore any attached CellMeasure. (PR #3546)

• @bjlittle set a CellMeasure’s measure attribute to have a default value of area. Previously, the measure
was provided as a keyword argument to CellMeasure with a default value of None, which caused a
TypeError when no measure was provided, since area or volume are the only accepted values. (PR
#3533)

• @trexfeathers set all plot types in iris.plot to now use matplotlib.dates.date2num to format date/time co-
ordinates for use on a plot axis (previously pcolor() and pcolormesh() did not include this behaviour).
(PR #3762)

• @trexfeathers changed date/time axis labels in iris.quickplot to now always be based on the epoch used
in matplotlib.dates.date2num (previously would take the unit from a time coordinate, if present, even though the
coordinate’s value had been changed via date2num). (PR #3762)

458 Chapter 28. What’s New in Iris

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#flags
https://github.com/SciTools/iris/pull/3800
https://github.com/bouweandela
https://github.com/SciTools/iris/pull/3701
https://github.com/bjlittle
https://docs.python.org/3/library/logging.html
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/issues/1887
https://github.com/SciTools/iris/issues/2765
https://github.com/SciTools/iris/issues/3478
https://github.com/SciTools/iris/issues/3478
https://github.com/SciTools/iris/pull/3785
https://github.com/pp-mo
https://github.com/TomekTrzeciak
https://github.com/SciTools/iris/pull/3943
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3641
https://github.com/jonseddon
https://github.com/SciTools/iris/pull/3656
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3566
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3546
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3533
https://github.com/SciTools/iris/pull/3533
https://github.com/trexfeathers
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://github.com/SciTools/iris/pull/3762
https://github.com/trexfeathers
https://matplotlib.org/api/dates_api.html#matplotlib.dates.date2num
https://github.com/SciTools/iris/pull/3762

Iris, Release 3.0.1

• @pp-mo newly included attributes of cell measures in NETCDF-CF file loading; they were previously being
discarded. They are now available on the CellMeasure in the loaded Cube. (PR #3800)

• @pp-mo fixed the netcdf loader to now handle any grid-mapping variables with missing false_easting and
false_northing properties, which was previously failing for some coordinate systems. See Issue #3629.
(PR #3804)

• @stephenworsley changed the way tick labels are assigned from string coords. Previously, the first tick label
would occasionally be duplicated. This also removes the use of Matplotlib’s deprecated IndexFormatter.
(PR #3857)

• @znicholls fixed _title() to only check units.is_time_reference if the units symbol is not used.
(PR #3902)

• @rcomer fixed a bug whereby numpy array type attributes on a cube’s coordinates could prevent printing it. See
Issue #3921. (PR #3922)

28.2.4 Incompatible Changes

• @pp-mo rationalised CubeList extraction methods:

The former method iris.cube.CubeList.extract_strict, and the strict keyword of the
extract() method have been removed, and are replaced by the new routines extract_cube() and
extract_cubes(). The new routines perform the same operation, but in a style more like other Iris
functions such as load_cube() and load_cubes(). Unlike strict extraction, the type of return value
is now completely consistent : extract_cube() always returns a Cube, and extract_cubes() always
returns an iris.cube.CubeList of a length equal to the number of constraints. (PR #3715)

• @pp-mo removed the former function iris.analysis.coord_comparison. (PR #3562)

• @bjlittle moved the iris.experimental.equalise_cubes.equalise_attributes() function
from the iris.experimental module into the iris.util module. Please use the iris.util.
equalise_attributes() function instead. (PR #3527)

• @bjlittle removed the module iris.experimental.concatenate. In v1.6.0 the experimental
concatenate functionality was moved to the iris.cube.CubeList.concatenate() method. Since
then, calling the iris.experimental.concatenate.concatenate() function raised an exception.
(PR #3523)

• @stephenworsley changed the default units of DimCoord and AuxCoord from “1” to “unknown”. (PR
#3795)

• @stephenworsley changed Iris objects loaded from NetCDF-CF files to have units='unknown' where the
corresponding NetCDF variable has no units property. Previously these cases defaulted to units='1'.
This affects loading of coordinates whose file variable has no “units” attribute (not valid, under CF units rules):
These will now have units of “unknown”, rather than “1”, which may prevent the creation of a hybrid vertical
coordinate. While these cases used to “work”, this was never really correct behaviour. (PR #3795)

• @SimonPeatman added attribute var_name to coordinates created by the iris.analysis.
trajectory.interpolate() function. This prevents duplicate coordinate errors in certain circum-
stances. (PR #3718)

• @bjlittle aligned the iris.analysis.maths.apply_ufunc() with the rest of the iris.analysis.
maths API by changing its keyword argument from other_cube to other. (PR #3785)

• @bjlittle changed the iris.analysis.maths.IFunc.__call__() to ignore any surplus other key-
word argument for a data_func that requires only one argument. This aligns the behaviour of iris.
analysis.maths.IFunc.__call__() with apply_ufunc(). Previously a ValueError exception
was raised. (PR #3785)

28.2. v3.0 (25 Jan 2021) 459

https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3800
https://github.com/pp-mo
https://github.com/SciTools/iris/issues/3629
https://github.com/SciTools/iris/pull/3804
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3857
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902
https://github.com/rcomer
https://github.com/SciTools/iris/issues/3921
https://github.com/SciTools/iris/pull/3922
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3715
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3562
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3527
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3523
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3795
https://github.com/SciTools/iris/pull/3795
https://github.com/stephenworsley
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.8/cf-conventions.html#units
https://github.com/SciTools/iris/pull/3795
https://github.com/SimonPeatman
https://github.com/SciTools/iris/pull/3718
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3785

Iris, Release 3.0.1

28.2.5 Deprecations

• @stephenworsley removed the deprecated iris.Future flags cell_date_time_objects,
netcdf_promote, netcdf_no_unlimited and clip_latitudes. (PR #3459)

• @stephenworsley changed iris.fileformats.pp.PPField.lbproc to be an int. The deprecated
attributes flag1, flag2 etc. have been removed from it. (PR #3461)

• @bjlittle deprecated as_compatible_shape() in preference for Resolve e.g., Resolve(src,
tgt)(tgt.core_data()). The as_compatible_shape() function will be removed in a future re-
lease of Iris. (PR #3892)

28.2.6 Dependencies

• @stephenworsley, @trexfeathers and @bjlittle removed Python2 support, modernising the codebase by
switching to exclusive Python3 support. (PR #3513)

• @bjlittle improved the developer set up process. Configuring Iris and Installing From Source (Developers) as a
developer with all the required package dependencies is now easier with our curated conda environment YAML
files. (PR #3812)

• @stephenworsley pinned Iris to require Dask >=2.0. (PR #3460)

• @stephenworsley and @trexfeathers pinned Iris to require Cartopy >=0.18, in order to remain compatible
with the latest version of Matplotlib. (PR #3762)

• @bjlittle unpinned Iris to use the latest version of Matplotlib. Supporting Iris for both Python2 and
Python3 had resulted in pinning our dependency on Matplotlib at v2.x. But this is no longer necessary
now that Python2 support has been dropped. (PR #3468)

• @stephenworsley and @trexfeathers unpinned Iris to use the latest version of Proj. (PR #3762)

• @stephenworsley and @trexfeathers removed GDAL from the extensions dependency group. We no longer
consider it to be an extension. (PR #3762)

28.2.7 Documentation

• @tkknight moved the Tri-Polar Grid Projected Plotting from the general part of the gallery to oceanography.
(PR #3761)

• @tkknight updated documentation to use a modern sphinx theme and be served from https://scitools-iris.
readthedocs.io/en/latest/. (PR #3752)

• @bjlittle added support for the black code formatter. This is now automatically checked on GitHub PRs, re-
placing the older, unittest-based iris.tests.test_coding_standards.TestCodeFormat. Black
provides automatic code format correction for most IDEs. See the new developer guide section on Code For-
matting. (PR #3518)

• @tkknight and @trexfeathers refreshed the Contributing a “What’s New” Entry for the What’s New in Iris.
This includes always creating the latest what’s new page so it appears on the latest documentation at https:
//scitools-iris.readthedocs.io/en/latest/whatsnew. This resolves Issue #2104, Issue #3451, Issue #3818, Issue
#3837. Also updated the Maintainer Steps to follow when making a release. (PR #3769, PR #3838, PR #3843)

• @tkknight enabled the PDF creation of the documentation on the Read the Docs service. The PDF may be
accessed by clicking on the version at the bottom of the side bar, then selecting PDF from the Downloads
section. (PR #3765)

• @stephenworsley added a warning to the iris.analysis.cartography.project() function regard-
ing its behaviour on projections with non-rectangular boundaries. (PR #3762)

460 Chapter 28. What’s New in Iris

https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3459
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3461
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3892
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3513
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3812
https://github.com/stephenworsley
https://github.com/dask/dask
https://github.com/SciTools/iris/pull/3460
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/SciTools/cartopy
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3762
https://github.com/bjlittle
https://matplotlib.org/
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3468
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/OSGeo/PROJ
https://github.com/SciTools/iris/pull/3762
https://github.com/stephenworsley
https://github.com/trexfeathers
https://github.com/SciTools/iris/pull/3762
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3761
https://github.com/tkknight
https://scitools-iris.readthedocs.io/en/latest/
https://scitools-iris.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3752
https://github.com/bjlittle
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3518
https://github.com/tkknight
https://github.com/trexfeathers
https://scitools-iris.readthedocs.io/en/latest/whatsnew
https://scitools-iris.readthedocs.io/en/latest/whatsnew
https://github.com/SciTools/iris/issues/2104
https://github.com/SciTools/iris/issues/3451
https://github.com/SciTools/iris/issues/3818
https://github.com/SciTools/iris/issues/3837
https://github.com/SciTools/iris/issues/3837
https://github.com/SciTools/iris/pull/3769
https://github.com/SciTools/iris/pull/3838
https://github.com/SciTools/iris/pull/3843
https://github.com/tkknight
https://scitools-iris.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3765
https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3762

Iris, Release 3.0.1

• @stephenworsley added the Combining Units section to the user guide to clarify how Units are handled during
cube arithmetic. (PR #3803)

• @tkknight overhauled the Further Topics including information on getting involved in becoming a contributor
and general structure of the guide. This resolves Issue #2170, Issue #2331, Issue #3453, Issue #314, Issue
#2902. (PR #3852)

• @rcomer added argument descriptions to the DimCoord docstring. (PR #3681)

• @tkknight added two url’s to be ignored for the make linkcheck. This will ensure the Iris github project
is not repeatedly hit during the linkcheck for issues and pull requests as it can result in connection refused and
thus travis-ci job failures. For more information on linkcheck, see Testing. (PR #3873)

• @tkknight enabled the napolean package that is used by sphinx to cater for the existing google style docstrings
and to also allow for numpy docstrings. This resolves Issue #3841. (PR #3871)

• @tkknight configured sphinx-build to promote warnings to errors when building the documentation via
make html. This will minimise technical debt accruing for the documentation. (PR #3877)

• @tkknight updated Installing Iris to include a reference to Windows Subsystem for Linux. (PR #3885)

• @tkknight updated the Iris Documentation homepage to include panels so the links are more visible to users.
This uses the sphinx-panels extension. (PR #3884)

• @bjlittle created the Further topics section and included documentation for Metadata, Lenient Metadata, and
Lenient Cube Maths. (PR #3890)

• @jonseddon updated the CF version of the netCDF saver in the Saving Iris Cubes section and in the equivalent
function docstring. (PR #3925)

• @bjlittle applied Title Case Capitalization to the documentation. (PR #3940)

28.2.8 Internal

• @pp-mo and @lbdreyer removed all Iris test dependencies on iris-grib by transferring all relevant content to the
iris-grib repository. (PR #3662, PR #3663, PR #3664, PR #3665, PR #3666, PR #3669, PR #3670, PR #3671,
PR #3672, PR #3742, PR #3746)

• @lbdreyer and @pp-mo overhauled the handling of dimensional metadata to remove duplication. (PR #3422,
PR #3551)

• @trexfeathers simplified the standard license header for all files, which removes the need to repeatedly update
year numbers in the header. (PR #3489)

• @stephenworsley changed the numerical values in tests involving the Robinson projection due to improvements
made in Proj. (PR #3762) (see also Proj#1292 and Proj#2151)

• @stephenworsley changed tests to account for more detailed descriptions of projections in GDAL. (PR #3762)
(see also GDAL#1185)

• @stephenworsley changed tests to account for GDAL now saving fill values for data without masked points.
(PR #3762)

• @trexfeathers changed every graphics test that includes Cartopy’s coastlines to account for new adaptive coast-
line scaling. (PR #3762) (see also Cartopy#1105)

• @trexfeathers changed graphics tests to account for some new default grid-line spacing in Cartopy. (PR #3762)
(see also Cartopy#1117)

• @trexfeathers added additional acceptable graphics test targets to account for very minor changes in Matplotlib
version 3.3 (colormaps, fonts and axes borders). (PR #3762)

28.2. v3.0 (25 Jan 2021) 461

https://github.com/stephenworsley
https://github.com/SciTools/iris/pull/3803
https://github.com/tkknight
https://github.com/SciTools/iris/issues/2170
https://github.com/SciTools/iris/issues/2331
https://github.com/SciTools/iris/issues/3453
https://github.com/SciTools/iris/issues/314
https://github.com/SciTools/iris/issues/2902
https://github.com/SciTools/iris/issues/2902
https://github.com/SciTools/iris/pull/3852
https://github.com/rcomer
https://github.com/SciTools/iris/pull/3681
https://github.com/tkknight
https://travis-ci.org/github/SciTools/iris
https://github.com/SciTools/iris/pull/3873
https://github.com/tkknight
https://sphinxcontrib-napoleon.readthedocs.io/en/latest/sphinxcontrib.napoleon.html
https://www.sphinx-doc.org/en/master/
https://github.com/numpy/numpy
https://github.com/SciTools/iris/issues/3841
https://github.com/SciTools/iris/pull/3871
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3877
https://github.com/tkknight
https://github.com/SciTools/iris/pull/3885
https://github.com/tkknight
https://sphinx-panels.readthedocs.io/en/latest/
https://github.com/SciTools/iris/pull/3884
https://github.com/bjlittle
https://github.com/SciTools/iris/pull/3890
https://github.com/jonseddon
https://github.com/SciTools/iris/pull/3925
https://github.com/bjlittle
https://apastyle.apa.org/style-grammar-guidelines/capitalization/title-case
https://github.com/SciTools/iris/pull/3940
https://github.com/pp-mo
https://github.com/lbdreyer
https://github.com/SciTools/iris-grib
https://github.com/SciTools/iris-grib
https://github.com/SciTools/iris/pull/3662
https://github.com/SciTools/iris/pull/3663
https://github.com/SciTools/iris/pull/3664
https://github.com/SciTools/iris/pull/3665
https://github.com/SciTools/iris/pull/3666
https://github.com/SciTools/iris/pull/3669
https://github.com/SciTools/iris/pull/3670
https://github.com/SciTools/iris/pull/3671
https://github.com/SciTools/iris/pull/3672
https://github.com/SciTools/iris/pull/3742
https://github.com/SciTools/iris/pull/3746
https://github.com/lbdreyer
https://github.com/pp-mo
https://github.com/SciTools/iris/pull/3422
https://github.com/SciTools/iris/pull/3551
https://github.com/trexfeathers
https://github.com/SciTools/iris/pull/3489
https://github.com/stephenworsley
https://github.com/OSGeo/PROJ
https://github.com/SciTools/iris/pull/3762
https://github.com/OSGeo/PROJ/pull/1292
https://github.com/OSGeo/PROJ/pull/2151
https://github.com/stephenworsley
https://github.com/OSGeo/gdal
https://github.com/SciTools/iris/pull/3762
https://github.com/OSGeo/gdal/pull/1185
https://github.com/stephenworsley
https://github.com/OSGeo/gdal
https://github.com/SciTools/iris/pull/3762
https://github.com/trexfeathers
https://scitools.org.uk/cartopy/docs/latest/matplotlib/geoaxes.html?highlight=coastlines#cartopy.mpl.geoaxes.GeoAxes.coastlines
https://github.com/SciTools/iris/pull/3762
https://github.com/SciTools/cartopy/pull/1105
https://github.com/trexfeathers
https://github.com/SciTools/cartopy
https://github.com/SciTools/iris/pull/3762
https://github.com/SciTools/cartopy/pull/1117
https://github.com/trexfeathers
https://matplotlib.org/
https://github.com/SciTools/iris/pull/3762

Iris, Release 3.0.1

• @rcomer corrected the Matplotlib backend in Iris tests to ignore matplotlib.rcdefaults, instead the tests will
always use agg. (PR #3846)

• @bjlittle migrated the black support from 19.10b0 to 20.8b1. (PR #3866)

• @lbdreyer updated the CF standard name table to the latest version: v75. (PR #3867)

• @bjlittle added PEP 517 and PEP 518 support for building and installing Iris, in particular to handle the PyKE
package dependency. (PR #3812)

• @bjlittle added metadata support for comparing attributes dictionaries that contain numpy arrays using
xxHash, an extremely fast non-cryptographic hash algorithm, running at RAM speed limits.

• @bjlittle added the iris.tests.assertDictEqual method to override unittest.TestCase.
assertDictEqual() in order to cope with testing metadata attributes dictionary comparison where
the value of a key may be a numpy array. (PR #3785)

• @bjlittle added the get_logger() function for creating a generic logging.Logger with a logging.
StreamHandler and custom logging.Formatter. (PR #3785)

• @owena11 identified and optimised a bottleneck in FieldsFile header loading due to the use of numpy.
fromfile(). (PR #3791)

• @znicholls added a test for plotting with the label being taken from the unit’s symbol, see
test_pcolormesh_str_symbol() (PR #3902).

• @znicholls made step_over_diffs() robust to hyphens (-) in the input path (i.e. the result_dir
argument) (PR #3902).

• @bjlittle migrated the CIaaS from travis-ci to cirrus-ci, and removed stickler-ci support. (PR #3928)

• @bjlittle introduced nox as a common and easy entry-point for test automation. It can be used both from cirrus-
ci in the cloud, and locally by the developer to run the Iris tests, the doc-tests, the gallery doc-tests, and lint Iris
with flake8 and black. (PR #3928)

28.3 v2.4 (20 Feb 2020)

This document explains the changes made to Iris for this release (View all changes.)

28.3.1 Features

Last python 2 version of Iris

Iris 2.4 is a final extra release of Iris 2, which back-ports specific desired features from Iris 3 (not yet released).

The purpose of this is both to support early adoption of certain newer features, and to provide a final release for Python
2.

The next release of Iris will be version 3.0 : a major-version release which introduces breaking API and behavioural
changes, and only supports Python 3.

• iris.coord_systems.Geostationary can now accept creation arguments of false_easting=None or
false_northing=None, equivalent to values of 0. Previously these kwargs could be omitted, but could not be
set to None. This also enables loading of netcdf data on a Geostationary grid, where either of these keys is not
present as a grid-mapping variable property : Previously, loading any such data caused an exception.

462 Chapter 28. What’s New in Iris

https://github.com/rcomer
https://matplotlib.org/3.1.1/api/matplotlib_configuration_api.html?highlight=rcdefaults#matplotlib.rcdefaults
https://github.com/SciTools/iris/pull/3846
https://github.com/bjlittle
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3866
https://github.com/lbdreyer
https://cfconventions.org/Data/cf-standard-names/75/build/cf-standard-name-table.html
https://github.com/SciTools/iris/pull/3867
https://github.com/bjlittle
https://www.python.org/dev/peps/pep-0517
https://www.python.org/dev/peps/pep-0518
https://pypi.org/project/scitools-pyke/
https://github.com/SciTools/iris/pull/3812
https://github.com/bjlittle
https://github.com/numpy/numpy
https://github.com/Cyan4973/xxHash
https://github.com/bjlittle
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertDictEqual
https://docs.python.org/2.7/library/unittest.html#unittest.TestCase.assertDictEqual
https://github.com/numpy/numpy
https://github.com/SciTools/iris/pull/3785
https://github.com/bjlittle
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://docs.python.org/2.7/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/2.7/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/2.7/library/logging.html#logging.Formatter
https://github.com/SciTools/iris/pull/3785
https://github.com/owena11
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://numpy.org/doc/stable/reference/generated/numpy.fromfile.html#numpy.fromfile
https://github.com/SciTools/iris/pull/3791
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902
https://github.com/znicholls
https://github.com/SciTools/iris/pull/3902
https://github.com/bjlittle
https://travis-ci.org/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://stickler-ci.com/
https://github.com/SciTools/iris/pull/3928
https://github.com/bjlittle
https://nox.thea.codes/en/stable/
https://cirrus-ci.com/github/SciTools/iris
https://cirrus-ci.com/github/SciTools/iris
https://flake8.pycqa.org/en/stable/
https://black.readthedocs.io/en/stable/
https://github.com/SciTools/iris/pull/3928

Iris, Release 3.0.1

• The area weights used when performing area weighted regridding with iris.analysis.AreaWeighted
are now cached. This allows a significant speed up when regridding multiple similar cubes, by repeatedly using
a iris.analysis.AreaWeighted.regridder() objects which you created first.

• Name constraint matching against cubes during loading or extracting has been relaxed from strictly matching
against the name(), to matching against either the standard_name, long_name, NetCDF var_name, or
STASH attributes metadata of a cube.

• Cubes and coordinates now have a new names property that contains a tuple of the standard_name,
long_name, NetCDF var_name, and STASH attributes metadata.

• The NameConstraint provides richer name constraint matching when loading or extracting against cubes,
by supporting a constraint against any combination of standard_name, long_name, NetCDF var_name
and STASH from the attributes dictionary of a Cube.

28.3.2 Bugs Fixed

• Fixed a problem which was causing file loads to fetch all field data whenever UM files (PP or Fieldsfiles) were
loaded. With large source files, initial file loads are slow, with large memory usage before any cube data is even
fetched. Large enough files will cause a crash. The problem occurs only with Dask versions >= 2.0.

28.3.3 Internal

• Iris is now able to use the latest version of matplotlib.

28.4 v2.3 (19 Dec 2019)

This document explains the changes made to Iris for this release (View all changes.)

28.4.1 Features

Support for CF 1.7

We have introduced several changes that contribute to Iris’s support for the CF Conventions, including some CF 1.7
additions. We are now able to support:

• Climatological Coordinates

• Standard name modifiers

• Geostationary projection

You can read more about each of these below.

Additionally, the conventions attribute, added by Iris when saving to NetCDF, has been updated to CF-1.7, accord-
ingly.

Climatological Coordinate Support

Iris can now load, store and save NetCDF climatological coordinates. Any cube time coordinate can be marked as a
climatological time axis using the boolean property: climatological. The climatological bounds are stored in
the coordinate’s bounds property.

28.4. v2.3 (19 Dec 2019) 463

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#climatological-statistics

Iris, Release 3.0.1

When an Iris climatological coordinate is saved in NetCDF, the NetCDF coordinate variable will be given a ‘clima-
tology’ attribute, and the contents of the coordinate’s bounds property are written to a NetCDF boundary variable
called ‘<coordinate-name>_bounds’. These are in place of a standard ‘bounds’ attribute and accompanying boundary
variable. See below for an example adapted from CF conventions:

dimensions:
time=4;
bnds=2;

variables:
float temperature(time,lat,lon);

temperature:long_name="surface air temperature";
temperature:cell_methods="time: minimum within years time: mean over

→˓years";
temperature:units="K";

double time(time);
time:climatology="time_climatology";
time:units="days since 1960-1-1";

double time_climatology(time,bnds);
data: // time coordinates translated to date/time format
time="1960-4-16", "1960-7-16", "1960-10-16", "1961-1-16" ;
time_climatology="1960-3-1", "1990-6-1",

"1960-6-1", "1990-9-1",
"1960-9-1", "1990-12-1",
"1960-12-1", "1991-3-1" ;

If a climatological time axis is detected when loading NetCDF - indicated by the format described above - the
climatological property of the Iris coordinate will be set to True.

New Chunking Strategy

Iris now makes better choices of Dask chunk sizes when loading from NetCDF files: If a file variable has small,
specified chunks, Iris will now choose Dask chunks which are a multiple of these up to a default target size.

This is particularly relevant to files with an unlimited dimension, which previously could produce a large number of
small chunks. This had an adverse effect on performance.

In addition, Iris now takes its default chunk size from the default configured in Dask itself, i.e. dask.config.
get('array.chunk-size').

Lazy Statistics

Several statistical operations can now be done lazily, taking advantage of the performance improvements offered by
Dask:

• aggregated_by()

• RMS (more detail below)

• MEAN

• Cube data equality testing (and hence cube equality) now uses a more relaxed tolerance : This means that some
cubes may now test ‘equal’ that previously did not. Previously, Iris compared cube data arrays using abs(a -
b) < 1.e-8

464 Chapter 28. What’s New in Iris

http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#climatological-statistics

Iris, Release 3.0.1

We now apply the default operation of numpy.allclose() instead, which is equivalent to abs(a - b)
< (1.e-8 + 1.e-5 * b)

• Added support to render HTML for CubeList in Jupyter Notebooks and JupyterLab.

• Loading CellMeasures with integer values is now supported.

• New coordinate system: iris.coord_systems.Geostationary , including load and save support,
based on the CF Geostationary projection definition.

• iris.coord_systems.VerticalPerspective can now be saved to and loaded from NetCDF files.

• iris.experimental.regrid.PointInCell moved to iris.analysis.PointInCell to make
this regridding scheme public

• Iris now supports standard name modifiers. See Appendix C, Standard Name Modifiers for more information.

• iris.cube.Cube.remove_cell_measure() now also allows removal of a cell measure by its name
(previously only accepted a CellMeasure object).

• The iris.analysis.RMS aggregator now supports a lazy calculation. However, the “weights” keyword is
not currently supported by this, so a weighted calculation will still return a realised result, and force realisation
of the original cube data.

• Iris now supports NetCDF Climate and Forecast (CF) Metadata Conventions 1.7 (see CF 1.7 Conventions Doc-
ument for more information)

• Updated standard name support to CF standard name table version 70, 2019-12-10

• Updated UM STASH translations to metarelate/metOcean commit 448f2ef, 2019-11-29

28.4.2 Bugs Fixed

• Cube equality of boolean data is now handled correctly.

• Fixed a bug where cell measures were incorrect after a cube transpose() operation. Previously, this resulted
in cell-measures that were no longer correctly mapped to the cube dimensions.

• The AuxCoord disregarded masked points and bounds, as did the DimCoord. Fix permits an AuxCoord to
contain masked points/bounds, and a TypeError exception is now raised when attempting to create or set the
points/bounds of a DimCoord with arrays with missing points.

• iris.coord_systems.VerticalPerspective coordinate system now uses the CF Vertical perspec-
tive definition; had been erroneously using Geostationary.

• CellMethod will now only use valid NetCDF name tokens to reference the coordinates involved in the statis-
tical operation.

• The following var_name properties will now only allow valid NetCDF name tokens to reference the said NetCDF
variable name. Note that names with a leading underscore are not permitted.

• iris.aux_factory.AuxCoordFactory.var_name

• iris.coords.CellMeasure.var_name

• iris.coords.Coord.var_name

• iris.coords.AuxCoord.var_name

• iris.cube.Cube.var_name

• Rendering a cube in Jupyter will no longer crash for a cube with attributes containing \n.

• NetCDF variables which reference themselves in their cell_measures attribute can now be read.

28.4. v2.3 (19 Dec 2019) 465

https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose
http://cfconventions.org/cf-conventions/cf-conventions.html#_geostationary_projection
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html#standard-name-modifiers
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html
http://cfconventions.org/Data/cf-conventions/cf-conventions-1.7/cf-conventions.html
http://cfconventions.org/Data/cf-standard-names/70/build/cf-standard-name-table.html
https://github.com/metarelate/metOcean/tree/448f2ef5e676edaaa27408b9f3ddbecbf05e3289
http://cfconventions.org/cf-conventions/cf-conventions.html#vertical-perspective
http://cfconventions.org/cf-conventions/cf-conventions.html#vertical-perspective
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_data_set_components.html#object_name
https://www.unidata.ucar.edu/software/netcdf/documentation/NUG/netcdf_data_set_components.html#object_name

Iris, Release 3.0.1

• quiver() now handles circular coordinates.

• The names of cubes loaded from abf/abl files have been corrected.

• Fixed a bug in UM file loading, where any landsea-mask-compressed fields (i.e. with LBPACK=x2x) would
cause an error later, when realising the data.

• iris.cube.Cube.collapsed() now handles partial collapsing of multidimensional coordinates that
have bounds.

• Fixed a bug in the PROPORTION aggregator, where cube data in the form of a masked array with array.
mask=False would cause an error, but possibly only later when the values are actually realised. (Note: since
netCDF4 version 1.4.0, this is now a common form for data loaded from netCDF files).

• Fixed a bug where plotting a cube with a iris.coord_systems.LambertConformal coordinate system
would result in an error. This would happen if the coordinate system was defined with one standard parallel,
rather than two. In these cases, a call to as_cartopy_crs() would fail.

• iris.cube.Cube.aggregated_by() now gives correct values in points and bounds when handling mul-
tidimensional coordinates.

• Fixed a bug in the iris.cube.Cube.collapsed() operation, which caused the unexpected realization
of any attached auxiliary coordinates that were bounded. It now correctly produces a lazy result and does not
realise the original attached AuxCoords.

28.4.3 Internal

• Iris now supports Proj4 up to version 5, but not yet 6 or beyond, pending fixes to some cartopy tests.

• Iris now requires Dask >= 1.2 to allow for improved coordinate equality checks.

28.4.4 Documentation

• Adopted a new colour logo for Iris

• Added a gallery example showing how to concatenate NEMO ocean model data, see Load a Time Series of Data
From the NEMO Model.

• Added an example for loading Iris cubes for Constraining on Time in the user guide, demonstrating how to load
data within a specified date range.

• Added notes to the iris.load() documentation, and the user guide Loading Iris Cubes chapter, emphasizing
that the order of the cubes returned by an iris load operation is effectively random and unstable, and should not
be relied on.

• Fixed references in the documentation of iris.util.find_discontiguities() to a non existent
“mask_discontiguities” routine : these now refer to mask_cube().

466 Chapter 28. What’s New in Iris

https://github.com/SciTools/cartopy/pull/1289#pullrequestreview-272774087
https://github.com/SciTools/iris/blob/master/docs/iris/src/_static/Iris7_1_trim_100.png

Iris, Release 3.0.1

28.5 v2.2 (11 Oct 2018)

This document explains the changes made to Iris for this release (View all changes.)

28.5.1 Features

2-Dimensional Coordinate Plotting

The Iris plot functions pcolor() and pcolormesh() now accommodate the plotting of 2-dimensional coordinates
as well as 1-dimensional coordinates.

To enable this feature, each coordinate passed in for plotting will be automatically checked for contiguity. Coordinate
bounds must either be contiguous, or the cube’s data must be masked at the discontiguities in order to avoid plotting
errors.

The Iris plot function iris.plot.quiver() has been added, and this also works with 2-dimensional plot coordi-
nates.

2-Dimensional Grid Vectors

The Iris functions iris.analysis.cartography.gridcell_angles() and iris.analysis.
cartography.rotate_grid_vectors() have been added, allowing you to convert gridcell-oriented vectors
to true-North/East ones.

NetCDF Data Variable Chunk Sizes

NetCDF data variable chunk sizes are now utilised at load time for significant performance improvements.

• The iris.fileformats.um.FieldCollation objects, which are passed into load callbacks
when using iris.fileformats.um.structured_um_loading(), now have the additional prop-
erties: iris.fileformats.um.FieldCollation.data_filepath and iris.fileformats.
um.FieldCollation.data_field_indices. These provide the file locations of the original data
fields, which are otherwise lost in the structured loading process.

• iris.util.reverse() can now be used to reverse a cube by specifying one or more coordinates.

• Time mean fields can now be saved to PP files as a cell method.

• Cube aggregators iris.analysis.MIN(), iris.analysis.MAX(), iris.analysis.SUM() and
iris.analysis.COUNT() now perform lazy aggregation by utilizing dask.

• Error messages thrown upon failed addition of an AuxCoordFactory now include the name of the required
(but absent) coordinate as well as the name of the cube.

• The function iris.util.find_discontiguities() can be used to check for discontiguities in the
bounds arrays of cube coordinates. Additionally, discontiguous points in coordinates can be explicitly masked
using another new feature iris.util.mask_cube().

• iris.util.array_equal() now has a ‘withnans’ keyword, which provides a NaN-tolerant array com-
parison.

28.5. v2.2 (11 Oct 2018) 467

Iris, Release 3.0.1

28.5.2 Bugs Fixed

• The bug has been fixed that prevented printing time coordinates with bounds when the time coordinate was
measured on a long interval (that is, months or years).

• “Gracefully filling. . . ” warnings are now only issued when the coordinate or bound data is actually masked.

v2.2.1 (28 May 2019)

• Iris can now correctly unpack a column of header objects when saving a pandas DataFrame to a cube.

• fixed a bug in iris.util.new_axis() : copying the resulting cube resulted in an exception, if it contained
an aux-factory.

• iris.coords.AuxCoord’s can now test as ‘equal’ even when the points or bounds arrays contain NaN
values, if values are the same at all points. Previously this would fail, as conventionally “NaN != NaN” in
normal floating-point arithmetic.

28.5.3 Internal

• Iris is now using the latest version release of dask (currently 0.19.3)

• Proj4 has been temporarily pinned to version < 5 while problems with the Mollweide projection are addressed.

• Matplotlib has been pinned to version < 3 temporarily while we account for its changes in all SciTools libraries.

28.5.4 Documentation

• Iris’ INSTALL document has been updated to include guidance for running tests.

• A link has been added to the Developers’ Guide to make it easier to find the Pull Request Check List.

28.6 v2.1 (06 Jun 2018)

This document explains the changes made to Iris for this release (View all changes.)

28.6.1 Features

• Added repr_html functionality to the Cube to provide a rich html representation of cubes in Jupyter note-
books. Existing functionality of print(cube) is maintained.

468 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

• Updated iris.cube.Cube.name() to return a STASH code if the cube has one and no other valid names
are present. This is now consistent with the summary information from iris.cube.Cube.summary().

• The partial collapse of multi-dimensional auxiliary coordinates is now supported. Collapsed bounds span the
range of the collapsed dimension(s).

• Added new function iris.cube.CubeList.realise_data() to compute multiple lazy values in a sin-
gle operation, avoiding repeated re-loading of data or re-calculation of expressions.

• The methods iris.cube.Cube.convert_units() and iris.coords.Coord.
convert_units() no longer forcibly realise the cube data or coordinate points/bounds. The converted
values are now lazy arrays if the originals were.

• Added iris.analysis.trajectory.interpolate() that allows you to interpolate to find values
along a trajectory.

• It is now possible to add an attribute of missing_value to a cube (Issue #1588).

• Iris can now represent data on the Albers Equal Area Projection, and the NetCDF loader and saver were updated
to handle this. (Issue #2943)

• The Mercator projection has been updated to accept the standard_parallel keyword argument (PR
#3041).

28.6. v2.1 (06 Jun 2018) 469

https://github.com/SciTools/iris/issues/1588
https://github.com/SciTools/iris/issues/2943
https://github.com/SciTools/iris/pull/3041
https://github.com/SciTools/iris/pull/3041

Iris, Release 3.0.1

28.6.2 Bugs Fixed

• All var names being written to NetCDF are now CF compliant. Non alpha-numeric characters are replaced with
‘_’, and var names now always have a leading letter (PR #2930).

• A cube resulting from a regrid operation using the iris.analysis.AreaWeighted regridding scheme will now have
the smallest floating point data type to which the source cube’s data type can be safely converted using NumPy’s
type promotion rules.

• iris.quickplot labels now honour the axes being drawn to when using the axes keyword (PR #3010).

28.6.3 Incompatible Changes

• The deprecated iris.experimental.um was removed. Please use consider using mule as an alternative.

• This release of Iris contains a number of updated metadata translations. See this changelist for further informa-
tion.

28.6.4 Internal

• The cf_units dependency was updated to cf_units v2.0. cf_units v2 is almost entirely backwards compatible
with v1. However the ability to preserve some aliased calendars has been removed. For this reason, it is possible
that NetCDF load of a variable with a “standard” calendar will result in a saved NetCDF of a “gregorian”
calendar.

• Iris updated its time-handling functionality from the netcdf4-python netcdftime implementation to the stan-
dalone module cftime. cftime is entirely compatible with netcdftime, but some issues may occur where users
are constructing their own datetime objects. In this situation, simply replacing netcdftime.datetime with
cftime.datetime should be sufficient.

• Iris now requires version 2 of Matplotlib, and >=1.14 of NumPy. Full requirements can be seen in the require-
ments directory of the Iris’ the source.

28.7 v2.0 (14 Feb 2018)

This document explains the changes made to Iris for this release (View all changes.)

28.7.1 Features

Dask Integration

The use of Biggus to provide support for virtual arrays and lazy evaluation within Iris has been replaced with Dask.

In addition the concept of lazy data, already used for the Cube data component, has now been extended to the data
arrays of a Coord and an AuxCoordFactory .

This is a major feature enhancement, allowing Iris to leverage dask’s rich functionality and community knowledge.

In particular, Dask’s threaded, multiprocessing or distributed schedulers can be used in order to best utilise available
compute and memory resource. For further details, see Real and Lazy Data.

• Changes to the iris.cube.Cube:

470 Chapter 28. What’s New in Iris

https://github.com/SciTools/iris/pull/2930
https://github.com/SciTools/iris/pull/3010
https://github.com/SciTools/mule
https://github.com/SciTools/iris/commit/69597eb3d8501ff16ee3d56aef1f7b8f1c2bb316#diff-1680206bdc5cfaa83e14428f5ba0f848
https://github.com/SciTools/cf_units
http://unidata.github.io/netcdf4-python/
https://github.com/Unidata/cftime
https://github.com/SciTools/iris/
https://github.com/SciTools/iris/
https://biggus.readthedocs.io/en/latest/
http://dask.pydata.org/en/latest/
http://dask.pydata.org/en/latest/scheduler-overview.html

Iris, Release 3.0.1

– The new core_data() method returns the real or lazy Cube data.

– The new in-place arithmetic operators __iadd__, __idiv__, __imul__, __isub__, and
__itruediv__ have been added to support Cube operations +=, /=, *=, and -=. Note that, for
divison __future__.division is always in effect.

• Changes to the iris.coords.Coord:

– The new bounds_dtype property (read-only) provides the dtype of the coordinate bounds, if they
exist.

– The new core_points() and core_bounds() methods return the real or lazy Coord points
and bounds data, respectively.

– The new has_lazy_points() and has_lazy_bounds() boolean methods return whether the
coordinate has lazy points and lazy bounds data, respectively.

– The new lazy_points() and lazy_bounds() methods return lazy representations of the coordi-
nate points and bounds data, respectively.

The iris.FUTURE has Arrived!

Throughout version 1 of Iris a set of toggles in iris.FUTURE were maintained. These toggles allowed certain
“future” behaviour to be enabled. Since the future has now arrived in Iris 2, all existing toggles in iris.FUTURE
now default to True.

• iris.Future.cell_datetime_objects

– Use of this FUTURE toggle is now deprecated.

– iris.coords.Cell objects in time coordinates now contain datetime objects by default and not num-
bers. For example:

>>> cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))
>>> print(cube.coord('time').cell(0).point)

1998-12-01 00:00:00

This change particularly impacts constraining datasets on time. All time
→˓constraints
must now be constructed with datetime objects or :class:`~iris.time.
→˓PartialDateTime` objects.
See userguide section 2.2.1 for more details on producing time constraints.

• iris.Future.netcdf_promote

– Use of this FUTURE toggle is now deprecated.

– Removed deprecated behaviour that does not automatically promote NetCDF variables to cubes. This
change means that NetCDF variables that define reference surfaces for dimensionless vertical coordinates
will always be promoted and loaded as independent cubes.

• iris.Future.netcdf_no_unlimited

– Use of this FUTURE toggle is now deprecated.

– Removed deprecated behaviour that automatically set the length of the outer netCDF variable to ‘UN-
LIMITED’ on save. This change means that no cube dimension coordinates will be automatically saved
as netCDF variables with ‘UNLIMITED’ length.

– You can manually specify cube dimension coordinates to save with ‘UNLIMITED’ length. For example:

28.7. v2.0 (14 Feb 2018) 471

https://docs.python.org/2.7/library/constants.html#True

Iris, Release 3.0.1

>>> iris.save(my_cube, 'my_result_file.nc', unlimited_dimensions=['latitude
→˓'])

• iris.Future.clip_latitudes

– Use of this FUTURE toggle is now deprecated.

– The iris.coords.Coord.guess_bounds() now limits the guessed bounds to [-90, 90] for lati-
tudes by default. The ability to turn this behaviour off is now deprecated.

28.7.2 Bugs Fixed

• Indexing or slicing an AuxCoord coordinate will return a coordinate with points and bounds data that are
new copied arrays, rather than views onto those of the original parent coordinate.

• Indexing or slicing a cell measure will return a new cell measure with data that is a new copied array, rather
than a view onto the original parent cell measure.

• Performing an in-place arithmetic add(), divide(), multiply(), or subtract() operation on a Cube
with integer or boolean data with a float result will raise an ArithmeticError exception.

• Lazy data now refers to absolute paths rather than preserving the form that was passed to iris.load functions.
This means that it is possible to use relative paths at load, change working directory, and still expect to be able
to load any un-loaded/lazy data. (#2325)

• The order in which files are passed to iris.load functions is now the order in which they are processed. (#2325)

• Loading from netCDF files with iris.load() will load a cube for each scalar variable, a variable that does
not reference a netCDF dimension, unless that scalar variable is identified as a CF scalar coordinate, referenced
from another data variable via the ‘coordinates’ attribute. Previously such data variables were ignored during
load.

28.7.3 Incompatible Changes

• The lazy_data() method no longer accepts any arguments. Setting lazy data should now be done with
cube.data.

Significant Changes in Calculated Results

Due to the replacement of Biggus with Dask, as described above, the results of certain types of calculation may have
significantly different values from those obtained in earlier versions. This is of a much greater order than the usual
small changes in floating point results : it applies especially to any data with masked points, or of long integer types.

• Due to concerns regarding maintainability and API consistency the iris.cube.Cube.share_data flag
introduced in v1.13 has been removed. Intra-cube data sharing is a oft-requested feature that we will be targeting
in a future Iris release.

• Using convert_units() on a cube with unknown units will now result in a UnitConversionError
being raised.

• iris.fileformats.pp_rules has been renamed to iris.fileformats.pp_load_rules for
consistency with the new iris.fileformats.pp_save_rules.

• Fill values are no longer taken from the cube’s data attribute when it is a masked array.

472 Chapter 28. What’s New in Iris

https://biggus.readthedocs.io/en/latest/
http://dask.pydata.org/en/latest/

Iris, Release 3.0.1

• When saving a cube or list of cubes in NetCDF format, a fill value or list of fill values can be specified via a
new fill_value argument. If a list is supplied, each fill value will be applied to each cube in turn. If a fill_value
argument is not specified, the default fill value for the file format and the cube’s data type will be used.

• When saving to PP, the “standard” BMDI of -1e30 is now always applied in PPField generation. To save PP
data with an alternative BMDI, use iris.fileformats.pp.save_pairs_from_cube() to generate
PPFields, and modify these before saving them to file.

• A ‘fill_value’ key can no longer be specified as part of the packing argument to iris.save when saving in netCDF
format. Instead, a fill value or list of fill values should be specified as a separate fill_value argument if required.

• If the packing argument to iris.save is a dictionary, an error is raised if it contains any keys other than ‘dtype’,
‘scale_factor’ and ‘add_offset’.

• The deprecated iris.fileformats.grib was removed. All Iris GRIB functionality is now delivered
through iris-grib.

• In Iris v1 it was possible to configure Iris to log at import time through iris.config.LOGGING. This capability
has been removed in Iris v2.

• When coordinates have no well defined plot axis, iris.plot and iris.quickplot routines now use the
order of the cube’s dimensions to determine the coordinates to plot as the x and y axis of a plot.

• The cf_units dependency version has been updated to v1.2.0, which prints shorter unit strings. For example, the
unit meter-second^-1 is now printed as m.s-1.

28.7.4 Deprecation

All deprecated functionality that was announced for removal in Iris 2.0 has been removed. In particular:

• The deprecated keyword arguments coord and name have been removed from the iris.cube.Cube con-
structor.

• The deprecated methods iris.cube.Cube.add_history, iris.cube.Cube.assert_valid and
iris.cube.Cube.regridded have been removed from iris.cube.Cube.

• The deprecated module iris.fileformats.pp_packing has been removed.

• The deprecated module iris.proxy has been removed.

• The deprecated configuration variable SAMPLE_DATA_DIR has been removed from iris.config in favour
of user installation of the iris-sample-data package.

• The deprecated module iris.unit has been removed in favour of cf_units.

• The BitwiseInt class has been removed from iris.fileformats.pp.

• Removed deprecated functions reset_load_rules, add_save_rules, reset_save_rules and
as_pairs from iris.fileformats.pp.

• The deprecated module iris.analysis.interpolate has been removed, along with the following dep-
recated classes and functions:

– iris.analysis.interpolate.linear

– iris.analysis.interpolate.nearest_neighbour_data_value

– iris.analysis.interpolate.regrid

– iris.analysis.interpolate.regrid_to_max_resolution

– iris.analysis.interpolate.extract_nearest_neighbour

– iris.analysis.interpolate.nearest_neighbour_indices

28.7. v2.0 (14 Feb 2018) 473

Iris, Release 3.0.1

– iris.analysis.interpolate.Linear1dExtrapolator

• Removed deprecated module iris.experimental.fieldsfile. Note that there is no direct replace-
ment for :meth:iris.experimental.fieldsfile.load, which specifically performed fast loading
from _either_ PP or FF files. Instead, please use the :meth:iris.fileformats.um.structured_um_loading context
manager, and within that context call :meth:iris.load, or the format-specific :meth:iris.fileformats.pp.load_cubes
or :meth:iris.fileformats.um.load_cubes.

• Removed deprecated module iris.fileformats.ff. Please use facilities in iris.fileformats.um
instead.

• Removed deprecated and unused kwarg ignore from the following functions:

– iris.analysis.calculus.curl(),

– iris.analysis.maths.add(), and

– iris.analysis.maths.subtract().

• Deprecated functions iris.util.broadcast_weights, iris.util.ensure_array and iris.
util.timers have been removed from iris.util.

• The following classes and functions have been removed from iris.fileformats.rules:

– iris.fileformat.rules.calculate_forecast_period

– iris.fileformat.rules.log

– iris.fileformat.rules.CMAttribute

– iris.fileformat.rules.CMCustomAttribute

– iris.fileformat.rules.CoordAndDims

– iris.fileformat.rules.DebugString

– iris.fileformat.rules.FunctionRule

– iris.fileformat.rules.ProcedureRule

– iris.fileformat.rules.Rule

– iris.fileformat.rules.RulesContainer

– iris.fileformat.rules.RuleResult

• In addition the deprecated keyword argument legacy_custom_rules has been removed from the iris.
fileformats.rules.Loader constructor.

28.7.5 Documentation

• A new UserGuide chapter on Real and Lazy Data has been added, and referenced from key points in the User
Guide .

474 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

28.8 v1.13 (17 May 2017)

This document explains the changes made to Iris for this release (View all changes.)

28.8.1 Features

• Allow the reading of NAME trajectories stored by time instead of by particle number.

• An experimental link to python-stratify via iris.experimental.stratify .

• Data arrays may be shared between cubes, and subsets of cubes, by using the iris.cube.share_data()
flag.

28.8.2 Bug Fixes

• The bounds are now set correctly on the longitude coordinate if a zonal mean diagnostic has been loaded from
a PP file as per the CF Standard.

• NetCDF loading will now determine whether there is a string-valued scalar label, i.e. a character variable that
only has one dimension (the length of the string), and interpret this correctly.

• A line plot of geographic coordinates (e.g. drawing a trajectory) wraps around the edge of the map cleanly,
rather than plotting a segment straight across the map.

• When saving to PP, lazy data is preserved when generating PP fields from cubes so that a list of cubes can be
saved to PP without excessive memory requirements.

• An error is now correctly raised if a user tries to perform an arithmetic operation on two cubes with mismatching
coordinates. Previously these cases were caught by the add and subtract operators, and now it is also caught by
the multiply and divide operators.

• Limited area Rotated Pole datasets where the data range is 0 <= lambda < 360, for example as produced
in New Zealand, are plotted over a sensible map extent by default.

• Removed the potential for a RuntimeWarning: overflow encountered in int_scalars which was missed
during collapsed calculations. This could trip up unwary users of limited data types, such as int32 for very large
numbers (e.g. seconds since 1970).

• The CF conventions state that certain formula_terms terms may be omitted and assumed to be zero
(http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#dimensionless-v-coord) so Iris now allows
factories to be constructed with missing terms.

• In the User Guide’s contour plot example, clabel inline is set to be False so that it renders correctly, avoiding
spurious horizontal lines across plots, although this does make labels a little harder to see.

• The computation of area weights has been changed to a more numerically stable form. The previous form
converted latitude to colatitude and used difference of cosines in the cell area computation. This formulation
uses latitude and difference of sines. The conversion from latitude to colatitude at lower precision causes errors
when computing the cell areas.

28.8. v1.13 (17 May 2017) 475

http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#dimensionless-v-coord

Iris, Release 3.0.1

28.8.3 Testing

• Iris has adopted conda-forge to provide environments for continuous integration testing.

28.9 v1.12 (31 Jan 2017)

This document explains the changes made to Iris for this release (View all changes.)

28.9.1 Features

Showcase Feature: New regridding schemes

A new regridding scheme, iris.analysis.UnstructuredNearest, performs nearest-neighbour regridding
from “unstructured” onto “structured” grids. Here, “unstructured” means that the data has X and Y coordinate values
defined at each horizontal location, instead of the independent X and Y dimensions that constitute a structured grid.
For example, data sampled on a trajectory or a tripolar ocean grid would be unstructured.

In addition, added experimental ProjectedUnstructured regridders which use scipy.interpolate.griddata to regrid
unstructured data (see iris.experimental.regrid.ProjectedUnstructuredLinear and iris.
experimental.regrid.ProjectedUnstructuredNearest). The essential purpose is the same as iris.
analysis.UnstructuredNearest. This scheme, by comparison, is generally faster, but less accurate.

Showcase Feature: Fast UM file loading

Support has been added for accelerated loading of UM files (PP and Fieldsfile), when these have a suitable regular
“structured” form.

A context manager is used to enable fast um loading in all the regular Iris load functions, such as iris.load() and
iris.load_cube(), when loading data from UM file types. For example:

>>> import iris
>>> filepath = iris.sample_data_path('uk_hires.pp')
>>> from iris.fileformats.um import structured_um_loading
>>> with structured_um_loading():
... cube = iris.load_cube(filepath, 'air_potential_temperature')

This approach can deliver loading which is 10 times faster or more. For example :

• a 78 Gb fieldsfile of 51,840 fields loads in about 13 rather than 190 seconds.

• a set of 25 800Mb PP files loads in about 21 rather than 220 seconds.

You can load data with structured loading and compare the results with those from “normal” loading to check whether
they are equivalent.

• The results will normally differ, if at all, only in having dimensions in a different order or a different choice of
dimension coordinates. In these cases, structured loading can be used with confidence.

• Ordinary Fieldsfiles (i.e. model outputs) are generally suitable for structured loading. Many PP files also are,
especially if produced directly from Fieldsfiles, and retaining the same field ordering.

• Some inputs however (generally PP) will be unsuitable for structured loading : For instance if a particular
combination of vertical levels and time has been omitted, or some fields appear out of order.

476 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

• There are also some known unsupported cases, including data which is produced on pseudo-levels. See the
detail documentation on this.

It is the user’s responsibility to use structured loading only with suitable inputs. Otherwise, odd behaviour and even
incorrect loading can result, as input files are not checked as fully as in a normal load.

Although the user loading call for structured loading can be just the same, and the returned results are also often
identical, structured loading is not in fact an exact identical replacement for normal loading:

• results are often somewhat different, especially regarding the order of dimensions and the choice of dimension
coordinates.

• although both constraints and user callbacks are supported, callback routines will generally need to be re-written.
This is because a ‘raw’ cube in structured loading generally covers multiple PPfields, which therefore need to
be handled as a collection : A grouping object containing them is passed to the callback ‘field’ argument. An
example showing callbacks suitable for both normal and structured loading can be seen here.

For full details, see : iris.fileformats.um.structured_um_loading().

• A skip pattern is introduced to the fields file loader, such that fields which cannot be turned into iris PPField
instances are skipped and the remaining fields are loaded. This especially applies to certain types of files that
can contain fields with a non-standard LBREL value : Iris can now load such a file, skipping the unreadable
field and printing a warning message.

• Iris can now load PP files containing a PP field whose LBLREC value does not match the field length recorded in
the file. A warning message is printed, and all fields up to the offending one are loaded and returned. Previously,
this simply resulted in an unrecoverable error.

• The transpose method of a Cube now results in a lazy transposed view of the original rather than realising the
data then transposing it.

• The iris.analysis.cartography.area_weights() function is now more accurate for single pre-
cision input bounds.

• Iris is now able to read seconds in datetimes provided in NAME trajectory files.

• Optimisations to trajectory interpolations have resulted in a significant speed improvement.

• Many new and updated translations between CF spec and STASH codes.

28.9.2 Deprecations

• The module iris.experimental.fieldsfile has been deprecated, in favour of the new fast-loading
mechanism provided by iris.fileformats.um.structured_um_loading().

28.9.3 Documentation

• Corrected documentation of iris.analysis.AreaWeighted scheme to make the usage scope clearer.

28.9. v1.12 (31 Jan 2017) 477

https://github.com/pp-mo/iris/blob/9042b4217ab6dd78dcfccfec19584170a5a6250a/lib/iris/tests/integration/fast_load/test_fast_load.py#L409

Iris, Release 3.0.1

28.10 v1.11 (29 Oct 2016)

This document explains the changes made to Iris for this release (View all changes.)

28.10.1 Features

• If available, display the STASH code instead of unknown / (unknown) when printing cubes with no
standard_name and no units.

• Support for saving to netCDF with data packing has been added.

• The coordinate system iris.coord_systems.LambertAzimuthalEqualArea has been added with
NetCDF saving support.

28.10.2 Bugs Fixed

• Fixed a floating point tolerance bug in iris.experimental.regrid.
regrid_area_weighted_rectilinear_src_and_grid() for wrapped longitudes.

• Allow iris.util.new_axis() to promote the nominated scalar coordinate of a cube with a scalar masked
constant data payload.

• Fixed a bug where iris.util._is_circular() would erroneously return false when coordinate values
are decreasing.

• When saving to NetCDF, the existing behaviour of writing string attributes as ASCII has been maintained across
known versions of netCDF4-python.

28.10.3 Documentation

• Fuller doc-string detail added to iris.analysis.cartography.unrotate_pole() and iris.
analysis.cartography.rotate_pole().

28.11 v1.10 (05 Sep 2016)

This document explains the changes made to Iris for this release (View all changes.)

28.11.1 Features

• Support has now been added for the iris_grib package, which provides GRIB format support in an optional
package, separate from Iris.

– If iris_grib is available, it will always be used in place of the older iris module iris.
fileformats.grib.

– The capabilities of iris_grib are essentially the same as the existing iris.fileformats.grib
when used with iris.FUTURE.strict_grib_load=True, with only small detail differences.

– The old iris.fileformats.grib module is now deprecated and may shortly be removed.

* If you are already using the recommended iris.FUTURE setting iris.FUTURE.
strict_grib_load=True this should not cause problems, as the new package is all-but iden-
tical.

478 Chapter 28. What’s New in Iris

https://github.com/SciTools/iris-grib

Iris, Release 3.0.1

· However, the option iris.FUTURE.strict_grib_load is itself now deprecated, so
you should remove code that sets it.

* If, however, your code is still using the older “non-strict” grib loading, then you may need to make
code changes.

· In particular, the field object passed to load callbacks is different. See iris.
fileformats.grib.message.GribMessage (the iris_grib.message.
GribMessage class is the same as this, for now).

– Please exercise your code with the new iris_grib module, and let us know of any problems you uncover,
such as files that will no longer load with the new implementation.

• iris.experimental.regrid.PointInCell.regridder() now works across coordinate systems,
including non latlon systems. Additionally, the requirement that the source data X and Y coordinates be 2D has
been removed. NB: some aspects of this change are backwards incompatible.

• Plotting non-Gregorian calendars is now supported. This adds nc_time_axis as a dependency.

• Promoting a scalar coordinate to a dimension coordinate with iris.util.new_axis() no longer loads
deferred data.

• The parsing functionality for Cell Methods from netCDF files is available as part of the iris.fileformats.
netcdf module as iris.fileformats.netcdf.parse_cell_methods().

• Support for the NameIII Version 2 file format has been added.

• Loading netcdf data in Mercator and Stereographic projections now accepts optional extra projection parameter
attributes (false_easting, false_northing and scale_factor_at_projection_origin), if
they match the default values.

– NetCDF files which define a Mercator projection where the false_easting, false_northing
and scale_factor_at_projection_origin match the defaults will have the projection loaded
correctly. Otherwise, a warning will be issued for each parameter that does not match the default and the
projection will not be loaded.

– NetCDF files which define a Steroegraphic projection where the
scale_factor_at_projection_origin is equal to 1.0 will have the projection loaded
correctly. Otherwise, a warning will be issued and the projection will not be loaded.

• The iris.plot routines contour(), contourf(), outline(), pcolor(), pcolormesh() and
points() now support plotting cubes with anonymous dimensions by specifying the numeric index of the
anonymous dimension within the coords keyword argument.

Note that the axis of the anonymous dimension will be plotted in index space.

• NetCDF loading and saving now supports Cubes that use the LambertConformal coordinate system.

• The experimental structured Fieldsfile loader load() has been extended to also load structured PP files.

Structured loading is a streamlined operation, offering the benefit of a significantly faster loading alternative to
the more generic iris.load() mechanism.

Note that structured loading is not an optimised wholesale replacement of iris.load(). Structured loading
is restricted to input containing contiguously ordered fields for each phenomenon that repeat regularly over the
same vertical levels and times. For further details, see load()

• iris.experimental.regrid_conservative is now compatible with ESMPy v7.

• Saving zonal (i.e. longitudinal) means to PP files now sets the ’64s’ bit in LBPROC.

• Loading of ‘little-endian’ PP files is now supported.

28.11. v1.10 (05 Sep 2016) 479

https://github.com/SciTools/nc-time-axis

Iris, Release 3.0.1

• All appropriate iris.plot functions now handle an axes keyword, allowing use of the object oriented
matplotlib interface rather than pyplot.

• The ability to pass file format object lists into the rules based load pipeline, as used for GRIB, Fields Files
and PP has been added. The iris.fileformats.pp.load_pairs_from_fields() and iris.
fileformats.grib.load_pairs_from_fields() are provided to produce cubes from such lists.
These lists may have been filtered or altered using the appropriate iris.fileformats modules.

• Cubes can now have an ‘hour’ coordinate added with iris.coord_categorisation.add_hour().

• Time coordinates from PP fields with an lbcode of the form 3xx23 are now correctly encoded with a 360-day
calendar.

• The loading from and saving to netCDF of CF cell_measure variables is supported, along with their representa-
tion within a Cube as cell_measures.

• Cubes with anonymous dimensions can now be concatenated. This can only occur along a dimension that is not
anonymous.

• NetCDF saving of valid_range, valid_min and valid_max cube attributes is now allowed.

28.11.2 Bugs Fixed

• Altered Cell Methods to display coordinate’s standard_name rather than var_name where appropriate to avoid
human confusion.

• Saving multiple cubes with netCDF4 protected attributes should now work as expected.

• Concatenating cubes with singleton dimensions (dimensions of size one) now works properly.

• Fixed the grid_mapping_name and secant_latitudes handling for the LambertConformal coordinate
system.

• Fixed bug in iris.analysis.cartography.project() where the output projection coordinates
didn’t have units.

• Attempting to use iris.sample_data_path() to access a file that isn’t actually Iris sample data now
raises a more descriptive error. A note about the appropriate use of sample_data_path has also been added to
the documentation.

• Fixed a bug where regridding or interpolation with the Nearest scheme returned floating-point results even
when the source data was integer typed. It now always returns the same type as the source data.

• Fixed a bug where regridding circular data would ignore any source masking. This affected any regridding using
the Linear and Nearest schemes, and also iris.analysis.interpolate.linear().

• The coord_name parameter to scalar_cell_method() is now checked correctly.

• LBPROC is set correctly when a cube containing the minimum of a variable is saved to a PP file. The IA
component of LBTIM is set correctly when saving maximum or minimum values.

• The performance of iris.cube.Cube.extract() when a list of values is given to an instance of iris.
Constraint has been improved considerably.

• Fixed a bug with iris.cube.Cube.data() where an numpy.ndarray was not being returned for scalar
cubes with lazy data.

• When saving in netcdf format, the units of ‘latitude’ and ‘longitude’ coordinates specified in ‘degrees’ are saved
as ‘degrees_north’ and ‘degrees_east’ respectively, as defined in the CF conventions for netCDF files: sections
4.1 and 4.2.

480 Chapter 28. What’s New in Iris

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Iris, Release 3.0.1

• Fixed a bug with a class of pp files with lbyr == 0, where the date would cause errors when converting to a
datetime object (e.g. when printing a cube).

When processing a pp field with lbtim = 2x, lbyr == lbyrd == 0 and lbmon == lbmond, ‘month’ and
‘month_number’ coordinates are created instead of ‘time’.

• Fixed a bug in curl() where the sign of the r-component for spherical coordinates was opposite to what was
expected.

• A bug that prevented cube printing in some cases has been fixed.

• Fixed a bug where a deepcopy of a DimCoord would have writeable points and bounds arrays. These
arrays can now no longer be modified in-place.

• Concatenation no longer occurs when the auxiliary coordinates of the cubes do not match. This check is not
applied to AuxCoords that span the dimension the concatenation is occurring along. This behaviour can be
switched off by setting the check_aux_coords kwarg in iris.cube.CubeList.concatenate() to
False.

• Fixed a bug in iris.cube.Cube.subset() where an exception would be thrown while trying to subset
over a non-dimensional scalar coordinate.

28.11.3 Incompatible Changes

• The source and target for iris.experimental.regrid.PointInCell.regridder() must now
have defined coordinate systems (i.e. not None). Additionally, the source data X and Y coordinates must
have the same cube dimensions.

28.11.4 Deprecations

• Deprecated the iris.Future option iris.FUTURE.strict_grib_load. This only affected the mod-
ule iris.fileformats.grib, which is itself now deprecated. Please see iris_grib package, above.

• Deprecated the module iris.fileformats.grib. The new package iris_grib replaces this functionality,
which will shortly be removed. Please see iris_grib package, above.

• The use of iris.config.SAMPLE_DATA_DIR has been deprecated and replaced by the now importable
iris_sample_data package.

• Deprecated the module iris.analysis.interpolate. This contains the following public items, all of
which are now deprecated and will be removed in a future release:

– linear()

– regrid()

– regrid_to_max_resolution()

– nearest_neighbour_indices()

– nearest_neighbour_data_value()

– extract_nearest_neighbour()

– class Linear1dExtrapolator.

Please use the replacement facilities individually noted in the module documentation for iris.analysis.
interpolate

• The method iris.cube.Cube.regridded() has been deprecated. Please use iris.cube.Cube.
regrid() instead (see regridded() for details).

28.11. v1.10 (05 Sep 2016) 481

https://github.com/SciTools/iris-grib
https://github.com/SciTools/iris-sample-data

Iris, Release 3.0.1

• Deprecated iris.fileformats.grib.hindcast_workaround and iris.fileformats.grib.
GribWrapper. The class iris.fileformats.grib.message.GribMessage provides alternative
means of working with GRIB message instances.

• Deprecated the module iris.fileformats.ff. Please use the replacement facilities in module iris.
fileformats.um :

– iris.fileformats.um.um_to_pp() replaces iris.fileformats.ff.FF2PP.

– iris.fileformats.um.load_cubes() replaces iris.fileformats.ff.
load_cubes().

– iris.fileformats.um.load_cubes_32bit_ieee() replaces iris.fileformats.ff.
load_cubes_32bit_ieee().

All other public components are generally deprecated and will be removed in a future release.

• The iris.fileformats.pp.as_pairs() and iris.fileformats.grib.as_pairs() are dep-
recated. These are replaced with iris.fileformats.pp.save_pairs_from_cube() and iris.
fileformats.grib.save_pairs_from_cube().

• iris.fileformats.pp_packing has been deprecated. Please install the separate mo_pack package in-
stead. This provides the same functionality.

• Deprecated logging functions (currently used only for rules logging): iris.config.iris.config.
RULE_LOG_DIR, iris.config.iris.config.RULE_LOG_IGNORE and iris.fileformats.
rules.log.

• Deprecated all the remaining text rules mechanisms: iris.fileformats.rules.
DebugString, iris.fileformats.rules.CMAttribute, iris.fileformats.rules.
CMCustomAttribute, iris.fileformats.rules.CoordAndDims, iris.fileformats.
rules.Rule, iris.fileformats.rules.FunctionRule, iris.fileformats.rules.
ProcedureRule, iris.fileformats.rules.RulesContainer and iris.fileformats.
rules.calculate_forecast_period().

• Deprecated the custom pp save rules mechanism implemented by the functions iris.fileformats.
pp.add_save_rules() and iris.fileformats.pp.reset_save_rules(). The func-
tions iris.fileformats.pp.as_fields(), iris.fileformats.pp.as_pairs() and iris.
fileformats.pp.save_fields() provide alternative means of achieving the same ends.

28.11.5 Documentation

• It is now clear that repeated values will form a group under iris.cube.Cube.aggregated_by() even
if they aren’t consecutive. Hence, the documentation for iris.cube has been changed to reflect this.

• The documentation for iris.analysis.calculus.curl() has been updated for clarity.

• False claims about iris.fileformats.pp.save(), iris.fileformats.pp.as_pairs(), and
iris.fileformats.pp.as_fields() being able to take instances of iris.cube.CubeList as in-
puts have been removed.

• A new code example Plotting Wind Direction Using Quiver, demonstrating the use of a quiver plot to display
wind speeds over Lake Victoria, has been added.

• The docstring for iris.analysis.SUM has been updated to explicitly state that weights passed to it aren’t
normalised internally.

• A note regarding the impossibility of partially collapsing multi-dimensional coordinates has been added to the
user guide.

482 Chapter 28. What’s New in Iris

https://github.com/SciTools/mo_pack

Iris, Release 3.0.1

28.12 v1.9 (10 Dec 2015)

This document explains the changes made to Iris for this release (View all changes.)

28.12.1 Features

• Support for running on Python 3.4 has been added to the whole code base. Some features which depend on
external libraries will not be available until they also support Python 3, namely:

– gribapi does not yet provide a Python 3 interface

• Added the UM pseudo level type to the information made available in the STASH_TRANS table in iris.
fileformats.um._ff_cross_references

• When reading “cell_methods” attributes from NetCDF files, allow optional whitespace before the colon. This
is not strictly in the CF spec, but is a common occurrence.

• Basic cube arithmetic (plus, minus, times, divide) now supports lazy evaluation.

• iris.analysis.cartography.rotate_winds() can now operate much faster on multi-layer (i.e. >
2-dimensional) cubes, as it calculates rotation coefficients only once and reuses them for additional layers.

• Linear regridding of a multi-layer (i.e. > 2-dimensional) cube is now much faster, as it calculates transform
coefficients just once and reuses them for additional layers.

• Ensemble statistics can now be saved to GRIB2, using Product Definition Template 4.11.

• Loading of NetCDF data with ocean vertical coordinates now returns a ‘depth’ in addition to an ‘eta’ cube. This
operates on specific defined dimensionless coordinates : see CF spec version 1.6, Appendix D.

• iris.analysis.stats.pearsonr() updates:

– Cubes can now be different shapes, provided one is broadcastable to the other.

– Accepts weights keyword for weighted correlations.

– Accepts mdtol keyword for missing data tolerance level.

– Accepts common_mask keyword for restricting calculation to unmasked pairs of cells.

• Added a new point-in-cell regridding scheme, iris.experimental.regrid.PointInCell.

• Added iris.analysis.WPERCENTILE() - a new weighted aggregator for calculating percentiles.

• Added cell-method translations for LBPROC=64 and 192 in UM files, encoding ‘zonal mean’ and ‘zonal+time
mean’.

• Support for loading GRIB2 messages defined on a Lambert conformal grid has been added to the GRIB2 loader.

• Data on potential-temperature (theta) levels can now be saved to GRIB2, with a fixed surface type of 107.

• Added several new helper functions for file-save customisation, (see also : Saving Iris Cubes):

– iris.fileformats.grib.as_pairs()

– iris.fileformats.grib.as_messages()

– iris.fileformats.grib.save_messages()

– iris.fileformats.pp.as_pairs()

– iris.fileformats.pp.as_fields()

– iris.fileformats.pp.save_fields()

28.12. v1.9 (10 Dec 2015) 483

Iris, Release 3.0.1

• Loading data from GRIB2 now supports most of the currently defined ‘data representation templates’ : code
numbers 0, 1, 2, 3, 4, 40, 41, 50, 51 and 61.

• When a Fieldsfile is opened for update as a iris.experimental.um.FieldsFileVariant, unmodi-
fied packed data in the file can now be retained in the original form. Previously it could only be stored in an
unpacked form.

• When reading and writing NetCDF data, the CF ‘flag’ attributes, “flag_masks”, “flag_meanings” and
“flag_values” are now preserved through Iris load and save.

• mo_pack was added as an optional dependency. It is used to encode and decode data in WGDOS packed form.

• The iris.experimental.um.Field.get_data()method can now be used to read Fieldsfile data after
the original iris.experimental.um.FieldsFileVariant has been closed.

28.12.2 Bugs Fixed

• Fixed a bug in iris.unit.Unit.convert() (and the equivalent in cf_units) so that it now converts data
to the native endianness, without which udunits could not read it correctly.

• Fixed a bug with loading WGDOS packed data in iris.experimental.um, which could occasionally
crash, with some data.

• Ignore non-numeric suffices in the numpy version string, which would otherwise crash some regridding routines.

• fixed a bug in iris.fileformats.um_cf_map where the standard name for the stash code m01s12i187
was incorrectly set, such that it is inconsistent with the stated unit of measure, ‘m s-1’. The different name, a
long_name of ‘change_over_time_in_upward_air_velocity_due_to_advection’ with units of ‘m s-1’ is now used
instead.

• Fixed a bug in iris.cube.Cube.intersection(). When edge points were at (base + period), intersec-
tion would unnecessarily wrap the data.

• Fixed a bug in iris.fileformats.pp. A previous release removed the ability to pass a partial constraint
on STASH attribute.

• iris.plot.default_projection_extent() now correctly raises an exception if a cube has X
bounds but no Y bounds, or vice versa. Previously it never failed this, as the test was wrong.

• When loading NetCDF data, a “units” attribute containing unicode characters is now transformed by backslash-
replacement. Previously this caused a crash. Note: unicode units are not supported in the CF conventions.

• When saving to NetCDF, factory-derived auxiliary coordinates are now correctly saved with different names
when they are not identical. Previously, such coordinates could be saved with the same name, leading to errors.

• Fixed a bug in iris.experimental.um.FieldsFileVariant.close(), which now correctly allo-
cates extra blocks for larger lookups when saving. Previously, when larger files open for update were closed,
they could be written out with data overlapping the lookup table.

• Fixed a bug in iris.aux_factory.OceanSigmaZFactory which sometimes caused crashes when
fetching the points of an “ocean sigma z” coordinate.

484 Chapter 28. What’s New in Iris

https://github.com/SciTools/mo_pack
https://github.com/SciTools/cf_units

Iris, Release 3.0.1

v1.9.1 (05 Jan 2016)

• Fixed a unicode bug preventing standard names from being built cleanly when installing in Python3

v1.9.2 (28 Jan 2016)

• New warning regarding data loss if writing to an open file which is also open to read, with lazy data.

• Removal of a warning about data payload loading from concatenate.

• Updates to concatenate documentation.

• Fixed a bug with a name change in the netcdf4-python package.

• Fixed a bug building the documentation examples.

• Fixed a bug avoiding sorting classes directly when iris.cube.Cube.coord_system() is used in
Python3.

• Fixed a bug regarding unsuccessful dot import.

28.12.3 Incompatible Changes

• GRIB message/file reading and writing may not be available for Python 3 due to GRIB API limitations.

28.12.4 Deprecations

• Deprecated iris.unit, with unit functionality provided by cf_units instead.

• When loading from NetCDF, a deprecation warning is emitted if there is vertical coordinate information that
would produce extra result cubes if iris.FUTURE.netcdf_promote were set, but it is not set.

• Deprecated iris.aux_factory.LazyArray

28.12.5 Documentation

• A chapter on saving iris cubes has been added to the user guide.

• Added script and documentation for building a what’s new page from developer-submitted contributions. See
Contributing a “What’s New” entry.

28.13 v1.8 (14 Apr 2015)

This document explains the changes made to Iris for this release (View all changes.)

28.13. v1.8 (14 Apr 2015) 485

https://github.com/SciTools/cf_units

Iris, Release 3.0.1

28.13.1 Features

Showcase: Rotate winds

Iris can now rotate and unrotate wind vector data by transforming the wind vector data to another coordinate system.

For example:

>>> from iris.analysis.cartography import rotate_winds
>>> u_cube = iris.load_cube('my_rotated_u_wind_cube.pp')
>>> v_cube = iris.load_cube('my_rotated_v_wind_cube.pp')
>>> target_cs = iris.coord_systems.GeogCS(6371229.0)
>>> u_prime, v_prime = rotate_winds(u_cube, v_cube, target_cs)

Showcase: Nearest-neighbour scheme

A nearest-neighbour scheme for interpolation and regridding has been added to Iris. This joins the existing Linear
and AreaWeighted interpolation and regridding schemes.

For example:

>>> result = cube.interpolate(sample_points, iris.analysis.Nearest())
>>> regridded_cube = cube.regrid(target_grid, iris.analysis.Nearest())

Showcase: Slices over a coordinate

You can slice over one or more dimensions of a cube using iris.cube.Cube.slices_over(). This provides
similar functionality to slices() but with almost the opposite outcome.

Using slices() to slice a cube on a selected dimension returns all possible slices of the cube with the selected
dimension retaining its dimensionality. Using slices_over() to slice a cube on a selected dimension returns all
possible slices of the cube over the selected dimension.

To demonstrate this:

>>> cube = iris.load(iris.sample_data_path('colpex.pp'))[0]
>>> print(cube.summary(shorten=True))
air_potential_temperature / (K) (time: 6; model_level_number: 10; grid_latitude:
→˓83; grid_longitude: 83)
>>> my_slice = next(cube.slices('time'))
>>> my_slice_over = next(cube.slices_over('time'))
>>> print(my_slice.summary(shorten=True))
air_potential_temperature / (K) (time: 6)
>>> print(my_slice_over.summary(shorten=True))
air_potential_temperature / (K) (model_level_number: 10; grid_latitude: 83; grid_
→˓longitude: 83)

• iris.cube.CubeList.concatenate() now works with biggus arrays and so now supports concatena-
tion of cubes with deferred data.

• Improvements to NetCDF saving through using biggus:

• A cube’s lazy data payload will still be lazy after saving; the data will not be loaded into memory by the save
operation.

486 Chapter 28. What’s New in Iris

https://biggus.readthedocs.io/

Iris, Release 3.0.1

• Cubes with data payloads larger than system memory can now be saved to NetCDF through biggus streaming
the data to disk.

• iris.util.demote_dim_coord_to_aux_coord() and iris.util.
promote_aux_coord_to_dim_coord() allow a coordinate to be easily demoted or promoted
within a cube.

• iris.util.squeeze() removes all length 1 dimensions from a cube, and demotes any associated squeeze
dimension DimCoord to be a scalar coordinate.

• iris.cube.Cube.slices_over(), which returns an iterator of all sub-cubes along a given coordinate
or dimension index.

• iris.cube.Cube.interpolate() now accepts datetime.datetime and netcdftime.datetime instances for
date or time coordinates.

• Many new and updated translations between CF spec and STASH codes or GRIB2 parameter codes.

• PP/FF loader creates a height coordinate at 1.5m or 10m for certain relevant stash codes.

• Lazy aggregator support for the standard deviation aggregator has been added.

• A speed improvement in calculation of iris.analysis.cartography.area_weights().

• Experimental support for unstructured grids has been added with iris.experimental.ugrid(). This
has been implemented using UGRID.

• iris.cube.CubeList.extract_overlapping() supports extraction of cubes over regions where
common coordinates overlap, over multiple coordinates.

• Warnings raised due to invalid units in loaded data have been suppressed.

• Experimental low-level read and write access for FieldsFile variants is now supported via iris.
experimental.um.FieldsFileVariant.

• PP loader will return cubes for all fields prior to a field with a problematic header before raising an exception.

• NetCDF loader skips invalid global attributes, raising a warning rather than raising an exception.

• A warning is now raised rather than an exception when constructing an AuxCoordFactory fails.

• Supported aux coordinate factories have been extended to include:

• ocean sigma coordinate,

• ocean s coordinate,

• ocean s coordinate, generic form 1, and

• ocean s coordinate, generic form 2.

• iris.cube.Cube.intersection() now supports taking a points-only intersection. Any bounds on in-
tersected coordinates are ignored but retained.

• The FF loader’s known handled grids now includes Grid 21.

• A nearest neighbour scheme is now provided for iris.cube.Cube.interpolate() and iris.
cube.Cube.regrid().

• iris.analysis.cartography.rotate_winds() supports transformation of wind vectors to a differ-
ent coordinate system.

• NumPy universal functions can now be applied to cubes using iris.analysis.maths.
apply_ufunc().

• Generic functions can be applied to Cube instances using iris.analysis.maths.IFunc.

28.13. v1.8 (14 Apr 2015) 487

https://github.com/pyugrid/pyugrid

Iris, Release 3.0.1

• The iris.analysis.Linear scheme now supports regridding as well as interpolation. This enables
iris.cube.Cube.regrid() to perform bilinear regridding, which now replaces the experimental routine
“iris.experimental.regrid.regrid_bilinear_rectilinear_src_and_grid”.

28.13.2 Bugs Fixed

• Fix in netCDF loader to correctly determine whether the longitude coordinate (including scalar coordinates) is
circular.

• iris.cube.Cube.intersection() now supports bounds that extend slightly beyond 360 degrees.

• Lateral Boundary Condition (LBC) type FieldFiles are now handled correctly by the FF loader.

• Making a copy of a scalar cube with no data now correctly copies the data array.

• Height coordinates in NAME trajectory output files have been changed to match other NAME output file for-
mats.

• Fixed datatype when loading an integer_constants array from a FieldsFile.

• FF/PP loader adds appropriate cell methods for lbtim.ib = 3 intervals.

• An exception is raised if the units of the latitude and longitude coordinates of the cube passed into iris.
analysis.cartography.area_weights() are not convertible to radians.

• GRIB1 loader now creates a time coordinate for a time range indicator of 2.

• NetCDF loader now loads units that are empty strings as dimensionless.

v1.8.1 (03 Jun 2015)

• The PP loader now carefully handles floating point errors in date time conversions to hours.

• The handling fill values for lazy data loaded from NetCDF files is altered, such that the _FillValue set in the file
is preserved through lazy operations.

• The risk that cube intersections could return incorrect results due to floating point tolerances is reduced.

• The new GRIB2 loading code is altered to enable the loading of various data representation templates; the data
value unpacking is handled by the GRIB API.

• Saving cube collections to NetCDF, where multiple similar aux-factories exist within the cubes, is now carefully
handled such that extra file variables are created where required in some cases.

28.13.3 Deprecations

• The original GRIB loader has been deprecated and replaced with a new template-based GRIB loader.

• Deprecated default NetCDF save behaviour of assigning the outermost dimension to be unlimited. Switch to the
new behaviour with no auto assignment by setting iris.FUTURE.netcdf_no_unlimited to True.

• The former experimental method “iris.experimental.regrid.regrid_bilinear_rectilinear_src_and_grid” has been
removed, as iris.analysis.Linear now includes this functionality.

488 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

28.13.4 Documentation

• A chapter on merge and concatenate has been added to the user guide.

• A section on installing Iris using conda has been added to the install guide.

• Updates to the chapter on regridding and interpolation have been added to the user guide.

28.14 v1.7 (04 Jul 2014)

This document explains the changes made to Iris for this release (View all changes.)

28.14.1 Features

Showcase: Iris is making use of Biggus

Iris is now making extensive use of Biggus for virtual arrays and lazy array evaluation. In practice this means that
analyses of cubes with data bigger than the available system memory are now possible.

Other than the improved functionality the changes are mostly transparent; for example, before the introduction of
biggus, MemoryErrors were likely for very large datasets:

>>> result = extremely_large_cube.collapsed('time', iris.analyis.MEAN)
MemoryError

Now, for supported operations, the evaluation is lazy (i.e. it doesn’t take place until the actual data is subsequently
requested) and can handle data larger than available system memory:

>>> result = extremely_large_cube.collapsed('time', iris.analyis.MEAN)
>>> print(type(result))
<class 'iris.cube.Cube'>

Memory is still a limiting factor if ever the data is desired as a NumPy array (e.g. via cube.data), but additional
methods have been added to the Cube to support querying and subsequently accessing the “lazy” data form (see
has_lazy_data() and lazy_data()).

Showcase: New interpolation and regridding API

New interpolation and regridding interfaces have been added which simplify and extend the existing functionality.

The interfaces are exposed on the cube in the form of the interpolate() and regrid() methods. Conceptually
the signatures of the methods are:

interpolated_cube = cube.interpolate(interpolation_points, interpolation_scheme)

and:

regridded_cube = cube.regrid(target_grid_cube, regridding_scheme)

Whilst not all schemes have been migrated to the new interface, iris.analysis.Linear defines both linear
interpolation and regridding, and iris.analysis.AreaWeighted defines an area weighted regridding scheme.

28.14. v1.7 (04 Jul 2014) 489

http://conda.pydata.org/
https://github.com/SciTools/biggus

Iris, Release 3.0.1

Showcase: Merge and concatenate reporting

Merge reporting is designed as an aid to the merge processes. Should merging a CubeList fail, merge reporting
means that a descriptive error will be raised that details the differences between the cubes in the CubeList that
prevented the merge from being successful.

A new CubeList method, called merge_cube(), has been introduced. Calling it on a CubeList will result in a
single merged Cube being returned or an error message being raised that describes why the merge process failed.

The following example demonstrates the error message that describes a merge failure caused by cubes having differing
attributes:

>>> cube_list = iris.cube.CubeList((c1, c2))
>>> cube_list.merge_cube()
Traceback (most recent call last):

...
raise iris.exceptions.MergeError(msgs)

iris.exceptions.MergeError: failed to merge into a single cube.
cube.attributes keys differ: 'foo'

The naming of this new method mirrors that of Iris load functions, where one would always expect a CubeList from
iris.load() and a Cube from iris.load_cube().

Concatenate reporting is the equivalent process for concatenating a CubeList. It is accessed through the method
concatenate_cube(), which will return a single concatenated cube or produce an error message that describes
why the concatenate process failed.

Showcase: Cube broadcasting

When performing cube arithmetic, cubes now follow similar broadcasting rules as NumPy arrays.

However, the additional richness of Iris coordinate meta-data provides an enhanced capability beyond the basic broad-
casting behaviour of NumPy.

This means that when performing cube arithmetic, the dimensionality and shape of cubes no longer need to match.
For example, if the dimensionality of a cube is reduced by collapsing, then the result can be used to subtract from the
original cube to calculate an anomaly:

>>> time_mean = original_cube.collapsed('time', iris.analysis.MEAN)
>>> mean_anomaly = original_cube - time_mean

Given both broadcasting and coordinate meta-data, Iris can now perform arithmetic with cubes that have similar but
not identical shape:

>>> similar_cube = original_cube.copy()
>>> similar_cube.transpose()
>>> zero_cube = original_cube - similar_cube

• Merge reporting that raises a descriptive error if the merge process fails.

• Linear interpolation and regridding now make use of SciPy’s RegularGridInterpolator for much faster linear
interpolation.

• NAME file loading now handles the “no time averaging” column and translates height/altitude above ground/sea-
level columns into appropriate coordinate metadata.

• The NetCDF saver has been extended to allow saving of cubes with hybrid pressure auxiliary factories.

490 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

• PP/FF loading supports LBLEV of 9999.

• Extended GRIB1 loading to support data on hybrid pressure levels.

• iris.coord_categorisation.add_day_of_year() can be used to add categorised day of year co-
ordinates based on time coordinates with non-Gregorian calendars.

• Support for loading data on reduced grids from GRIB files in raw form without automatically interpolating to a
regular grid.

• The coordinate systems iris.coord_systems.Orthographic and iris.coord_systems.
VerticalPerspective (for imagery from geostationary satellites) have been added.

• Extended NetCDF loading to support the “ocean sigma over z” auxiliary coordinate factory.

• Support added for loading CF-NetCDF data with bounds arrays that are missing a vertex dimension.

• iris.cube.Cube.rolling_window() can now be used with string-based iris.coords.
AuxCoord instances.

• Loading of PP and FF files has been optimised through deferring creation of PPField attributes.

• Automatic association of a coordinate’s CF formula terms variable with the data variable associated with that
coordinate.

• PP loading translates cross-section height into a dimensional auxiliary coordinate.

• String auxiliary coordinates can now be plotted with the Iris plotting wrappers.

• iris.analysis.geometry.geometry_area_weights() now allows for the calculation of normal-
ized cell weights.

• Many new translations between the CF spec and STASH codes or GRIB2 parameter codes.

• PP save rules add the data’s UM Version to the attributes of the saved file when appropriate.

• NetCDF reference surface variable promotion available through the iris.FUTURE mechanism.

• A speed improvement in calculation of iris.analysis.geometry.geometry_area_weights().

• The mdtol keyword was added to area-weighted regridding to allow control of the tolerance for missing data.
For a further description of this concept, see iris.analysis.AreaWeighted.

• Handling for patching of the CF conventions global attribute via a defined cf_patch_conventions function.

• Deferred GRIB data loading has been introduced for reduced memory consumption when loading GRIB files.

• Concatenate reporting that raises a descriptive error if the concatenation process fails.

• A speed improvement when loading PP or FF data and constraining on STASH code.

28.14.2 Bugs Fixed

• Data containing more than one reference cube for constructing hybrid height coordinates can now be loaded.

• Removed cause of increased margin of error when interpolating.

• Changed floating-point precision used when wrapping points for interpolation.

• Mappables that can be used to generate colorbars are now returned by Iris plotting wrappers.

• NetCDF load ignores over-specified formula terms on bounded dimensionless vertical coordinates.

• Auxiliary coordinate factory loading now correctly interprets formula term variables for “atmosphere hybrid
sigma pressure” coordinate data.

• Corrected comparison of NumPy NaN values in cube merge process.

28.14. v1.7 (04 Jul 2014) 491

Iris, Release 3.0.1

• Fixes for iris.cube.Cube.intersection() to correct calculating the intersection of a cube with split
bounds, handling of circular coordinates, handling of monotonically descending bounded coordinates and for
finding a wrapped two-point result and longitude tolerances.

• A bug affecting iris.cube.Cube.extract() and iris.cube.CubeList.extract() that led to
unexpected behaviour when operating on scalar cubes has been fixed.

• Aggregate_by may now be passed single-value coordinates.

• Making a copy of a iris.coords.DimCoord no longer results in the writeable flag on the copied points
and bounds arrays being set to True.

• Can now save to PP a cube that has vertical levels but no orography.

• Fix a bug causing surface altitude and surface pressure fields to not appear in cubes loaded with a STASH
constraint.

• Fixed support for iris.fileformats.pp.STASH objects in STASH constraints.

• A fix to avoid a problem where cube attribute names clash with NetCDF reserved attribute names.

• A fix to allow iris.cube.CubeList.concatenate() to deal with descending coordinate order.

• Add missing NetCDF attribute varname when constructing a new iris.coords.AuxCoord. * The datatype
of time arrays converted with iris.util.unify_time_units() is now preserved.

v1.7.3 (16 Dec 2014)

• Scalar dimension coordinates can now be concatenated with iris.cube.CubeList.concatenate().

• Arbitrary names can no longer be set for elements of a iris.fileformats.pp.SplittableInt.

• Cubes that contain a pseudo-level coordinate can now be saved to PP.

• Fixed a bug in the FieldsFile loader that prevented it always loading all available fields.

v1.7.4 (15 Apr 2015)

• Coord.guess_bounds() can now deal with circular coordinates.

• Coord.nearest_neighbour_index() can now work with descending bounds.

• Passing weights to Cube.rolling_window() no longer prevents other keyword arguments from being
passed to the aggregator.

• Several minor fixes to allow use of Iris on Windows.

• Made use of the new standard_parallels keyword in Cartopy’s LambertConformal projection (Cartopy v0.12).
Older versions of Iris will not be able to create LambertConformal coordinate systems with Cartopy >= 0.12.

492 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

28.14.3 Incompatible Changes

• Saving a cube with a STASH attribute to NetCDF now produces a variable with an attribute of
“um_stash_source” rather than “ukmo__um_stash_source”.

• Cubes saved to NetCDF with a coordinate system referencing a spherical ellipsoid now result in the grid mapping
variable containing only the “earth_radius” attribute, rather than the “semi_major_axis” and “semi_minor_axis”.

• Collapsing a cube over all of its dimensions now results in a scalar cube rather than a 1d cube.

28.14.4 Deprecations

• iris.util.ensure_array() has been deprecated.

• Deprecated the iris.fileformats.pp.reset_load_rules() and iris.fileformats.grib.
reset_load_rules() functions.

• Matplotlib is no longer a core Iris dependency.

28.14.5 Documentation

• New sections on cube broadcasting and regridding and interpolation have been added to the user guide.

• An example demonstrating custom log-scale colouring has been added. See Colouring Anomaly Data With
Logarithmic Scaling.

• An example demonstrating the creation of a custom iris.analysis.Aggregator has been added. See
Calculating a Custom Statistic.

• An example of reprojecting data from 2D auxiliary spatial coordinates (such as that from the ORCA grid) has
been added. See Tri-Polar Grid Projected Plotting.

• A clarification of the behaviour of iris.analysis.calculus.differentiate().

• A new “Technical Papers” section has been added to the documentation along with the addition of a paper
providing an overview of the load process for UM-like fileformats (e.g. PP and Fieldsfile).

28.15 v1.6 (26 Jan 2014)

This document explains the changes made to Iris for this release (View all changes.)

28.15.1 Features

Showcase Feature - Back to the future . . .

The new iris.FUTURE global variable is a iris.Future instance that controls the run-time behaviour of Iris.

By setting iris.FUTURE.cell_datetime_objects to True, a time reference coordinate will return datetime-
like objects when invoked with iris.coords.Coord.cell() or iris.coords.Coord.cells().

>>> from iris.coords import DimCoord
>>> iris.FUTURE.cell_datetime_objects = True
>>> coord = DimCoord([1, 2, 3], 'time', units='hours since epoch')

(continues on next page)

28.15. v1.6 (26 Jan 2014) 493

Iris, Release 3.0.1

(continued from previous page)

>>> print([str(cell) for cell in coord.cells()])
['1970-01-01 01:00:00', '1970-01-01 02:00:00', '1970-01-01 03:00:00']

Note that, either a datetime.datetime or netcdftime.datetime object instance will be returned, depend-
ing on the calendar of the time reference coordinate.

This capability permits the ability to express time constraints more naturally when the cell represents a datetime-like
object.

Ignore the 1st of January.
iris.Constraint(time=lambda cell: cell.point.month != 1 and cell.point.day != 1)

Note that, iris.Future also supports a context manager which allows multiple sections of code to execute with
different run-time behaviour.

>>> print(iris.FUTURE)
Future(cell_datetime_objects=False)
>>> with iris.FUTURE.context(cell_datetime_objects=True):
... # Code that expects to deal with datetime-like objects.
... print(iris.FUTURE)
...
Future(cell_datetime_objects=True)
>>> print(iris.FUTURE)
Future(cell_datetime_objects=False)

Showcase Feature - Partial date/time . . .

The iris.time.PartialDateTime class provides the ability to perform comparisons with other datetime-like
objects such as datetime.datetime or netcdftime.datetime.

The year, month, day, hour, minute, second and microsecond attributes of a iris.time.PartialDateTime
object may be fully or partially specified for any given comparison.

This is particularly useful for time based constraints, whilst enabling the iris.FUTURE.
cell_datetime_objects, see here for further details on this new release feature.

from iris.time import PartialDateTime

Ignore the 1st of January.
iris.Constraint(time=lambda cell: cell != PartialDateTime(month=1, day=1))

Constrain by a specific year.
iris.Constraint(time=PartialDateTime(year=2013))

Also see the User Guide Constraining on Time section for further commentary.

• GRIB loading supports latitude/longitude or Gaussian reduced grids for version 1 and version 2.

• A new utility function to assist with caching.

• The RMS aggregator supports weights.

• A new experimental function to equalise cube attributes.

• Collapsing a cube provides a tolerance level for missing-data.

• NAME loading supports vertical coordinates.

494 Chapter 28. What’s New in Iris

https://docs.python.org/2.7/library/datetime.html#datetime.datetime
http://docs.python.org/2/reference/datamodel.html#context-managers
https://docs.python.org/2.7/library/datetime.html#datetime.datetime

Iris, Release 3.0.1

• UM land/sea mask de-compression for Fieldsfiles and PP files.

• Lateral boundary condition Fieldsfile support.

• Staggered grid support for Fieldsfiles extended to type 6 (Arakawa C grid with v at poles).

• Extend support for Fieldsfiles with grid codes 11, 26, 27, 28 and 29.

• Promoting a scalar coordinate to new leading cube dimension.

• Interpreting cell methods from NAME.

• GRIB2 export without forecast_period, enabling NAME to GRIB2.

• Loading height levels from GRIB2.

• iris.coord_categorisation.add_categorised_coord() now supports multi-dimensional co-
ordinate categorisation.

• Fieldsfiles and PP support for loading and saving of air potential temperature.

• iris.experimental.regrid.regrid_weighted_curvilinear_to_rectilinear() regrids
curvilinear point data to a target rectilinear grid using associated area weights.

• Extended capability of the NetCDF saver iris.fileformats.netcdf.Saver.write() for fine-tune
control of a netCDF4.Variable. Also allows multiple dimensions to be nominated as unlimited.

• A new PEAK aggregator providing spline interpolation.

• A new utility function iris.util.broadcast_to_shape().

• A new utility function iris.util.as_compatible_shape().

• Iris tests can now be run on systems where directory write permissions previously did not allow it. This is
achieved by writing to the current working directory in such cases.

• Support for 365 day calendar PP fields.

• Added phenomenon translation between cf and grib2 for wind (from) direction.

• PP files now retain lbfc value on save, derived from the stash attribute.

A New Utility Function to Assist With Caching

To assist with management of caching results to file, the new utility function iris.util.
file_is_newer_than() may be used to easily determine whether the modification time of a specified
cache file is newer than one or more other files.

Typically, the use of caching is a means to circumvent the cost of repeating time consuming processing, or to reap the
benefit of fast-loading a pickled cube.

Determine whether to load from the cache or source.
if iris.util.file_is_newer(cache_file, source_file):

with open(cache_file, 'rb') as fh:
cube = cPickle.load(fh)

else:
cube = iris.load_cube(source_file)

Perhaps perform some intensive processing ...

Create the cube cache.
with open(cache_file, 'wb') as fh:

cPickle.dump(cube, fh)

28.15. v1.6 (26 Jan 2014) 495

Iris, Release 3.0.1

The RMS Aggregator Supports Weights

The iris.analysis.RMS aggregator has been extended to allow the use of weights using the new keyword argu-
ment weights.

For example, an RMS weighted cube collapse is performed as follows:

from iris.analysis import RMS
collapsed_cube = cube.collapsed('height', RMS, weights=weights)

Equalise Cube Attributes

To assist with iris.cube.Cube merging, the new experimental in-place function iris.experimental.
equalise_cubes.equalise_attributes() ensures that a sequence of cubes contains a common set of
iris.cube.Cube.attributes.

This attempts to smooth the merging process by ensuring that all candidate cubes have the same attributes.

Masking a Collapsed Result by Missing-Data Tolerance

The result from collapsing masked cube data may now be completely masked by providing a mdtol missing-data
tolerance keyword to iris.cube.Cube.collapsed().

This tolerance provides a threshold that will completely mask the collapsed result whenever the fraction of data to
missing-data is less than or equal to the provided tolerance.

Promote a Scalar Coordinate

The new utility function iris.util.new_axis() creates a new cube with a new leading dimension of size unity.
If a scalar coordinate is provided, then the scalar coordinate is promoted to be the dimension coordinate for the new
leading dimension.

Note that, this function will load the data payload of the cube.

A New PEAK Aggregator Providing Spline Interpolation

The new iris.analysis.PEAK aggregator calculates the global peak value from a spline interpolation of the
iris.cube.Cube data payload along a nominated coordinate axis.

For example, to calculate the peak time:

from iris.analysis import PEAK
collapsed_cube = cube.collapsed('time', PEAK)

496 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

28.15.2 Bugs Fixed

• iris.cube.Cube.rolling_window() has been extended to support masked arrays.

• iris.cube.Cube.collapsed() now handles string coordinates.

• Default LBUSER(2) to -99 for Fieldsfile and PP saving.

• iris.util.monotonic() returns the correct direction.

• File loaders correctly parse filenames containing colons.

• ABF loader now correctly loads the ABF data payload once.

• Support for 1D array iris.cube.cube.attributes.

• GRIB bounded level saving fix.

• iris.analysis.cartography.project() now associates a coordinate system with the resulting tar-
get cube, where applicable.

• iris.util.array_equal() now correctly ignores any mask if present, matching the behaviour of
numpy.array_equal() except with string array support.

• iris.analysis.interpolate.linear() now retains a mask in the resulting cube.

• iris.coords.DimCoord.from_regular() now correctly returns a coordinate which will always be
regular as indicated by is_regular().

• iris.util.rolling_window() handling of masked arrays (degenerate masks) fixed.

• Exception no longer raised for any ellipsoid definition in nimrod loading.

28.15.3 Incompatible Changes

• The experimental ‘concatenate’ function is now a method of a iris.cube.CubeList, see iris.cube.
CubeList.concatenate(). The functionality is unchanged.

• iris.cube.Cube.extract_by_trajectory() has been removed. Instead, use iris.analysis.
trajectory.interpolate().

• iris.load_strict() has been removed. Instead, use iris.load_cube() and iris.
load_cubes().

• iris.coords.Coord.cos() and iris.coords.Coord.sin() have been removed.

• iris.coords.Coord.unit_converted() has been removed. Instead, make a copy of the coordinate
using iris.coords.Coord.copy() and then call the iris.coords.Coord.convert_units()
method of the new coordinate.

• Iteration over a Cube has been removed. Instead, use iris.cube.Cube.slices().

• The following Unit deprecated methods/properties have been removed.

Removed Property/Method New Method
convertible() is_convertible()
dimensionless is_dimensionless()
no_unit is_no_unit()
time_reference is_time_reference()
unknown is_unknown()

28.15. v1.6 (26 Jan 2014) 497

https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal

Iris, Release 3.0.1

• As a result of deprecating iris.cube.Cube.add_history() and removing the automatic appending
of history by operations such as cube arithmetic, collapsing, and aggregating, the signatures of a number
of functions within iris.analysis.maths have been modified along with that of iris.analysis.
Aggregator and iris.analysis.WeightedAggregator.

• The experimental ABF and ABL functionality has now been promoted to core functionality in iris.
fileformats.abf.

• The following iris.coord_categorisation deprecated functions have been removed.

Removed Function New Function
add_custom_season() add_season()
add_custom_season_number() add_season_number()
add_custom_season_year() add_season_year()
add_custom_season_membership() add_season_membership()
add_month_shortname() add_month()
add_weekday_shortname() add_weekday()
add_season_month_initials() add_season()

• When a cube is loaded from PP or GRIB and it has both time and forecast period coordinates, and the time
coordinate has bounds, the forecast period coordinate will now also have bounds. These bounds will be aligned
with the bounds of the time coordinate taking into account the forecast reference time. Also, the forecast period
point will now be aligned with the time point.

28.15.4 Deprecations

• iris.cube.Cube.add_history() has been deprecated in favour of users modifying/creating the history
metadata directly. This is because the automatic behaviour did not deliver a sufficiently complete, auditable
history and often prevented the merging of cubes.

• iris.util.broadcast_weights() has been deprecated and replaced by the new utility function iris.
util.broadcast_to_shape().

• Callback mechanism iris.run_callback has had its deprecation of return values revoked. The callback can now
return cube instances as well as inplace changes to the cube.

28.15.5 New Contributors

Congratulations and thank you to felicityguest, jkettleb, kwilliams-mo and shoyer who all made their first contribution
to Iris!

28.16 v1.5 (13 Sep 2013)

This document explains the changes made to Iris for this release (View all changes.)

498 Chapter 28. What’s New in Iris

https://github.com/felicityguest
https://github.com/jkettleb
https://github.com/kwilliams-mo
https://github.com/shoyer

Iris, Release 3.0.1

28.16.1 Features

• Scatter plots can now be produced using iris.plot.scatter() and iris.quickplot.scatter().

• The functions iris.plot.plot() and iris.quickplot.plot() now take up to two arguments,
which may be cubes or coordinates, allowing the user to have full control over what is plotted on each axis.
The coords keyword argument is now deprecated for these functions. This now also gives extended 1D plotting
capability.

plot a 1d cube against a given 1d coordinate, with the cube
values on the x-axis and the coordinate on the y-axis
iris.plot.plot(cube, coord)

• iris.analysis.SUM is now a weighted aggregator, allowing it to take a weights keyword argument.

• GRIB2 translations added for standard_name ‘soil_temperature’.

• iris.cube.Cube.slices() can now handle passing dimension index as well as the currently supported
types (string, coordinate), in order to slice in cases where there is no coordinate associated with a dimension (a
mix of types is also supported).

Get cube slices corresponding to the dimension associated with longitude
and the first dimension from a multi-dimensional cube.
for sub_cube in cube.slices(['longitude', 0]):

print(sub_cube)

• iris.experimental.animate now provides experimental animation support.

Create an iterable of cubes (generator, lists etc.)
cube_iter = cubes.slices(('grid_longitude', 'grid_latitude'))
ani = animate(cube_iter, qplt.contourf)
plt.show()

• Support for UM ancillary files truncated with the UM utility ieee

• Complete support for Transverse Mercator with saving to NetCDF also.

import cartopy.crs as ccrs
import iris
import iris.quickplot as qplt
import matplotlib.pyplot as plt

fname = iris.sample_data_path('air_temp.pp')
temperature = iris.load_cube(fname)

plt.axes(projection=ccrs.TransverseMercator())
qplt.contourf(temperature)
plt.gca().coastlines()
plt.gca().gridlines()
plt.show()

28.16. v1.5 (13 Sep 2013) 499

Iris, Release 3.0.1

• Support for loading NAME files (gridded and trajectory data).

• Multi-dimensional coordinate support added for iris.analysis.cartography.
cosine_latitude_weights()

• Added limited packaged GRIB support (bulletin headers).

• In-place keyword added to iris.analysis.maths.divide() and iris.analysis.maths.
multiply().

• Performance gains for PP loading of the order of 40%.

• iris.quickplot now has a show() function to provide convenient access to matplotlib.pyplot.show().

• iris.coords.DimCoord.from_regular() now implemented which creates a DimCoord with regu-
larly spaced points, and optionally bounds.

• Iris can now cope with a missing bounds variable from NetCDF files.

• Added support for bool array indexing on a cube.

fname = iris.sample_data_path('air_temp.pp')
temperature = iris.load_cube(fname)
temperature[temperature.coord('latitude').points > 0]

The constraints mechanism is still the preferred means to do such a query.
temperature.extract(iris.Constraint(latitude=lambda v: v>0)))

• Added support for loading fields defined on regular Gaussian grids from GRIB files.

• iris.analysis.interpolate.extract_nearest_neighbour() now works without needing to
load the data (especially relevant to large datasets).

500 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

• When using plotting routines from iris.plot or iris.quickplot, the direction of vertical axes will be
reversed if the corresponding coordinate has a “positive” attribute set to “down”.

see: Oceanographic Profiles and T-S Diagrams

• New PP stashcode translations added including ‘dewpoint’ and ‘relative_humidity’.

• Added implied heights for several common PP STASH codes.

• GeoTIFF export capability enhanced for supporting various data types, coord systems and mapping 0 to 360
longitudes to the -180 to 180 range.

28.16.2 Bugs Fixed

• NetCDF error handling on save has been extended to capture file path and permission errors.

• Shape of the Earth scale factors are now correctly interpreted by the GRIB loader. They were previously used
as a multiplier for the given value but should have been used as a decimal shift.

• OSGB definition corrected.

• Transverse Mercator on load now accepts the following interchangeably due to inconsistencies in CF documen-
tation:

– +scale_factor_at_central_meridian <-> scale_factor_at_projection_origin

– +longitude_of_central_meridian <-> longitude_of_projection_origin (+recommended encoding)

• Ellipse description now maintained when converting GeogCS to cartopy.

• GeoTIFF export bug fixes.

• Polar axis now set to the North Pole, when a cube with no coordinate system is saved to the PP file-format.

• iris.coords.DimCoord.from_coord() and iris.coords.AuxCoord.from_coord() now
correctly returns a copy of the source coordinate’s coordinate system.

• Units part of the axis label is now omitted when the coordinate it represents is given as a time reference (iris.
quickplot).

• CF dimension coordinate is now maintained in the resulting cube when a cube with CF dimension coordinate is
being aggregated over.

• Units for Lambert conformal and polar stereographic coordinates now defined as meters.

• Various fieldsfile load bugs including failing to read the coordinates from the file have been fixed.

• Coding of maximum and minimum time-stats in GRIB2 saving has been fixed.

• Example code in section 4.1 of the user guide updated so it uses a sample data file that exists.

• Zorder of contour lines drawn by contourf() has been changed to address issue of objects appearing in-
between line and filled contours.

• Coord comparisons now function correctly when comparing to numpy scalars.

• Cube loading constraints and iris.cube.Cube.extract() correctly implement cell equality methods.

28.16. v1.5 (13 Sep 2013) 501

Iris, Release 3.0.1

28.16.3 Deprecations

• The coords keyword argument for iris.plot.plot() and iris.quickplot.plot() has been depre-
cated due to the new API which accepts multiple cubes or coordinates.

• iris.fileformats.pp.PPField.regular_points() and iris.fileformats.pp.
PPField.regular_bounds() have now been deprecated in favour of a new factory method iris.
coords.DimCoord.from_regular().

• iris.fileformats.pp.add_load_rules() and iris.fileformats.grib.
add_load_rules() are now deprecated.

28.17 v1.4 (14 Jun 2013)

This document explains the changes made to Iris for this release (View all changes.)

28.17.1 Features

• Multiple cubes can now be exported to a NetCDF file.

• Correct nearest-neighbour calculation with circular coords.

• Experimental regridding enhancements.

• Iris-Pandas interoperability.

• NIMROD level type 12 (levels below ground) can now be loaded.

• Load cubes from the internet via OPeNDAP.

• GeoTiff export (experimental).

• Cube merge update.

• Unambiguous season year naming.

• NIMROD files with multiple fields and period of interest can now be loaded.

• Missing values are now handled when loading GRIB messages.

• PP export rule to calculate forecast period.

• aggregated_by() now maintains array masking.

• IEEE 32bit fieldsfiles can now be loaded.

• NetCDF transverse mercator and climatology data can now be loaded.

• Polar stereographic GRIB data can now be loaded.

• Cubes with no vertical coord can now be exported to GRIB.

• Simplified resource configuration.

• Extended GRIB parameter translation.

• Added an optimisation for single-valued coordinate constraints.

• One dimensional linear interpolation fix.

• Fix for iris.analysis.calculus.differentiate.

• Fixed pickling of cubes with 2D aux coords from NetCDF.

502 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

• Fixed bug which ignored the “coords” keyword for certain plots.

• Use the latest release of Cartopy, v0.8.0.

Experimental Regridding Enhancements

Bilinear, area-weighted and area-conservative regridding functions are now available in iris.experimental.
These functions support masked data and handle derived coordinates such as hybrid height. The final API is still in
development.

In the meantime:

Bilinear Rectilinear Regridding

regrid_bilinear_rectilinear_src_and_grid() can be used to regrid a cube onto a horizontal grid
defined in a differentiate coordinate system. The data values are calculated using bilinear interpolation.

For example:

from iris.experimental.regrid import regrid_bilinear_rectilinear_src_and_grid
regridded_cube = regrid_bilinear_rectilinear_src_and_grid(source_cube, target_grid_
→˓cube)

Area-Weighted Regridding

regrid_area_weighted_rectilinear_src_and_grid() can be used to regrid a cube such that the data
values of the resulting cube are calculated using the area-weighted mean.

For example:

from iris.experimental.regrid import regrid_area_weighted_rectilinear_src_and_grid as
→˓regrid_area_weighted
regridded_cube = regrid_area_weighted(source_cube, target_grid_cube)

Area-Conservative Regridding

regrid_conservative_via_esmpy() can be used for area-conservative regridding between geographical co-
ordinate systems. This uses the ESMF library functions, via the ESMPy interface.

For example:

from iris.experimental.regrid_conservative import regrid_conservative_via_esmpy
regridded_cube = regrid_conservative_via_esmpy(source_cube, target_grid_cube)

28.17. v1.4 (14 Jun 2013) 503

Iris, Release 3.0.1

Iris-Pandas Interoperability

Conversion to and from Pandas Series and DataFrames is now available. See iris.pandas for more details.

Load Cubes From the Internet via OPeNDAP

Cubes can now be loaded directly from the internet, via OPeNDAP.

For example:

cubes = iris.load("http://geoport.whoi.edu/thredds/dodsC/bathy/gom15")

GeoTiff Export

With this experimental feature, two dimensional cubes can now be exported to GeoTiff files.

For example:

from iris.experimental.raster import export_geotiff
export_geotiff(cube, filename)

Note: This is a raw data export only and does not save Iris plots.

Cube Merge Update

Cube merging now favours numerical coordinates over string coordinates to describe a dimension, and DimCoord
over AuxCoord. These modifications prevent the error: “No functional relationship between separable and insepa-
rable candidate dimensions”.

Unambiguous Season Year Naming

The default names of categorisation coordinates are now less ambiguous. For example, add_month_number()
and add_month_fullname() now create “month_number” and “month_fullname” coordinates.

Cubes With no Vertical Coord can now be Exported to GRIB

Iris can now export cubes with no vertical coord to GRIB. The solution is still under discussion: See https://github.
com/SciTools/iris/issues/519.

Simplified Resource Configuration

A new configuration variable called iris.config.TEST_DATA_DIR has been added, replacing the previous
combination of iris.config.MASTER_DATA_REPOSITORY and iris.config.DATA_REPOSITORY. This
constant should be the path to a directory containing the test data required by the unit tests. It can be set by adding a
test_data_dir entry to the Resources section of site.cfg. See iris.config for more details.

504 Chapter 28. What’s New in Iris

https://pandas.pydata.org/pandas-docs/stable/reference/series.html
https://pandas.pydata.org/pandas-docs/stable/reference/frame.html
http://www.opendap.org/about
https://github.com/SciTools/iris/issues/519
https://github.com/SciTools/iris/issues/519

Iris, Release 3.0.1

Extended GRIB Parameter Translation

• More GRIB2 params are recognised on input.

• Now translates some codes on GRIB2 output.

• Some GRIB2 params may load with a different standard_name.

One dimensional Linear Interpolation Fix

linear() can now extrapolate from a single point assuming a gradient of zero. This prevents an issue when loading
cross sections with a hybrid height coordinate, on a staggered grid and only a single orography field.

Fix for iris.analysis.calculus.differentiate

A bug in differentiate() that had the potential to cause the loss of coordinate metadata when calculating the
curl or the derivative of a cube has been fixed.

28.17.2 Incompatible Changes

• As part of simplifying the mechanism for accessing test data, iris.io.select_data_path(), iris.
config.DATA_REPOSITORY, iris.config.MASTER_DATA_REPOSITORY and iris.config.
RESOURCE_DIR have been removed.

28.17.3 Deprecations

• The add_custom_season_* functions from coord_categorisation have been deprecated in favour of
adding their functionality to the add_season_* functions

28.18 v1.3 (27 Mar 2013)

This document explains the changes made to Iris for this release (View all changes.)

28.18.1 Features

• Experimental support for loading ABF/ABL files.

• Support in iris.analysis.interpolate.linear() for longitude ranges other than [-180, 180].

• Support for customised CF profiles on export to netCDF.

• The documentation now includes guidance on how to cite Iris.

• The ability to calculate the exponential of a Cube, via iris.analysis.maths.exp().

• Experimental support for concatenating Cubes along existing dimensions via iris.experimental.
concatenate.concatenate().

28.18. v1.3 (27 Mar 2013) 505

Iris, Release 3.0.1

Loading ABF/ABL Files

Support for the ABF and ABL file formats (as defined by the climate and vegetation research group of Boston Univer-
sity), is currently provided under the “experimental” system. As such, ABF/ABL file detection is not automatically
enabled.

To enable ABF/ABL file detection, simply import the iris.experimental.fileformats.abfmodule before
attempting to load an ABF/ABL file.

For example:

import iris.experimental.fileformats.abf
cube = iris.load_cube('/path/to/my/data.abf')

Customised CF Profiles

Iris now provides hooks in the CF-netCDF export process to allow user-defined routines to check and/or modify the
representation in the netCDF file.

The following keys within the iris.site_configuration dictionary have been reserved as hooks to external
user-defined CF profile functions:

• cf_profile ingests a iris.cube.Cube for analysis and returns a profile result

• cf_patch modifies the CF-netCDF file associated with export of the iris.cube.Cube

The iris.site_configuration dictionary should be configured via the iris/site_config.py file.

For further implementation details see iris/fileformats/netcdf.py.

Cube Concatenation

Iris now provides initial support for concatenating Cubes along one or more existing dimensions. Currently this will
force the data to be loaded for all the source Cubes, but future work will remove this restriction.

For example, if one began with a collection of Cubes, each containing data for a different range of times:

>>> print(cubes)
0: air_temperature (time: 30; latitude: 145; longitude: 192)
1: air_temperature (time: 30; latitude: 145; longitude: 192)
2: air_temperature (time: 30; latitude: 145; longitude: 192)

One could use iris.experimental.concatenate.concatenate() to combine these into a single Cube
as follows:

>>> new_cubes = iris.experimental.concatenate.concatenate(cubes)
>>> print(new_cubes)
0: air_temperature (time: 90; latitude: 145; longitude: 192)

Note: As this is an experimental feature, your feedback is especially welcome.

506 Chapter 28. What’s New in Iris

http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html

Iris, Release 3.0.1

28.18.2 Bugs Fixed

• Printing a Cube now supports Unicode attribute values.

• PP export now sets LBMIN correctly.

• Converting between reference times now works correctly for units with non-Gregorian calendars.

• Slicing a CubeList now returns a CubeList instead of a normal list.

28.18.3 Deprecations

• The boolean methods/properties on the Unit class have been updated to is_. . . () methods, in line with the
project’s naming conventions.

Deprecated Property/Method New Method
convertible() is_convertible()
dimensionless is_dimensionless()
no_unit is_no_unit()
time_reference is_time_reference()
unknown is_unknown()

28.19 v1.2 (28 Feb 2013)

This document explains the changes made to Iris for this release (View all changes.)

28.19.1 Features

• iris.cube.Cube.convert_units() and iris.coords.Coord.convert_units() have been
added. This is aimed at simplifying the conversion of a cube or coordinate from one unit to another. For
example, to convert a cube in kelvin to celsius, one can now call cube.convert_units(‘celsius’). The operation is
in-place and if the units are not convertible an exception will be raised.

• iris.cube.Cube.var_name, iris.coords.Coord.var_name and iris.aux_factory.
AuxCoordFactory.var_name attributes have been added. This attribute represents the CF variable
name of the object. It is populated when loading from CF-netCDF files and is used when writing to
CF-netCDF. A var_name keyword argument has also been added to the iris.cube.Cube.coord(),
iris.cube.Cube.coords() and iris.cube.Cube.aux_factory() methods.

• iris.coords.Coord.is_compatible() has been added. This method is used to determine whether
two coordinates are sufficiently alike to allow operations such as iris.coords.Coord.intersect() and
iris.analysis.interpolate.regrid() to take place. A corresponding method for cubes, iris.
cube.Cube.is_compatible(), has also been added.

• Printing a Cube is now more user friendly with regards to dates and time. All time and forecast_reference_time
scalar coordinates now display human readable date/time information.

• The units of a Cube are now shown when it is printed.

• The area weights calculated by iris.analysis.cartography.area_weights() may now be nor-
malised relative to the total grid area.

• Weights may now be passed to iris.cube.Cube.rolling_window() aggregations, thus allowing arbi-
trary digital filters to be applied to a Cube.

28.19. v1.2 (28 Feb 2013) 507

Iris, Release 3.0.1

28.19.2 Bugs Fixed

• The GRIB hindcast interpretation of negative forecast times can be enabled via the iris.fileformats.
grib.hindcast_workaround flag.

• The NIMROD file loader has been extended to cope with orography vertical coordinates.

28.19.3 Incompatible Changes

• The deprecated iris.cube.Cube.unit and iris.coords.Coord.unit attributes have been re-
moved.

28.19.4 Deprecations

• The iris.coords.Coord.unit_converted() method has been deprecated. Users should make a
copy of the coordinate using iris.coords.Coord.copy() and then call the iris.coords.Coord.
convert_units() method of the new coordinate.

• With the addition of the var_name attribute the signatures of DimCoord and AuxCoord have changed. This
should have no impact if you are providing parameters as keyword arguments, but it may cause issues if you are
relying on the position/order of the arguments.

• Iteration over a Cube has been deprecated. Instead, users should use iris.cube.Cube.slices().

28.20 v1.1 (03 Jan 2013)

This document explains the changes made to Iris for this release (View all changes.)

28.20.1 Features

With the release of Iris 1.1, we are introducing support for Mac OS X. Version 1.1 also sees the first batch of perfor-
mance enhancements, with some notable improvements to netCDF/PP import.

• Support for Mac OS X.

• GRIB1 import now supports time units of “3 hours”.

• Fieldsfile import now supports unpacked and “CRAY” 32-bit packed data in 64-bit Fieldsfiles.

• PP file import now supports “CRAY” 32-bit packed data.

• Various performance improvements, particularly for netCDF import, PP import, and constraints.

• GRIB2 export now supports level types of altitude and height (codes 102 and 103).

• iris.analysis.cartography.area_weights now supports non-standard dimension orders.

• PP file import now adds the “forecast_reference_time” for fields where LBTIM is 11, 12, 13, 31, or 32.

• PP file import now supports LBTIM values of 1, 2, and 3.

• Fieldsfile import now has some support for ancillary files.

• Coordinate categorisation functions added for day-of-year and user-defined seasons.

• GRIB2 import now has partial support for probability data defined with product template 4.9.

508 Chapter 28. What’s New in Iris

Iris, Release 3.0.1

Coordinate Categorisation

An add_day_of_year() categorisation function has been added to the existing suite in iris.
coord_categorisation.

Custom Seasons

The conventional seasonal categorisation functions have been complemented by two groups of functions which handle
user-defined, custom seasons.

The first group of functions is:

• iris.coord_categorisation.add_custom_season()

• iris.coord_categorisation.add_custom_season_number()

• iris.coord_categorisation.add_custom_season_year()

These functions mimic their non-custom versions, but with the addition of a seasons parameter which is used to
define the custom seasons. These seasons are defined by concatenating the single letter abbreviations of the relevant,
consecutive months.

For example, to categorise a Cube based on “winter” and “summer” months, one might do:

>>> seasons = ['mamjja', 'sondjf']
>>> iris.coord_categorisation.add_custom_season(cube, 'time', seasons)
>>> print(cube.coord('season').points)
['ondjfm' 'ondjfm' 'mamjja' 'mamjja' 'mamjja' 'mamjja' 'mamjja' 'mamjja'
'ondjfm' 'ondjfm' 'ondjfm' 'ondjfm']

The other custom season function is:

• iris.coord_categorisation.add_custom_season_membership().

This function adds a coordinate containing True/False values determined by membership of a single custom season.

28.20.2 Bugs Fixed

• PP export no longer attempts to set/overwrite the STASH code based on the standard_name.

• Cell comparisons now work consistently, which fixes a bug where bounded_cell > point_cell compares the point
to the bounds but, point_cell < bounded_cell compares the points.

• Fieldsfile import now correctly recognises pre v3.1 and post v5.2 versions, which fixes a bug where the two
were interchanged.

• iris.analysis.trajectory.interpolate now handles hybrid-height.

28.20. v1.1 (03 Jan 2013) 509

Iris, Release 3.0.1

28.21 v1.0 (17 Oct 2012)

This document explains the changes made to Iris for this release (View all changes.)

With the release of Iris 1.0, we have broadly completed the transition to the CF data model, and established a stable
foundation for future work. Following this release we plan to deliver significant performance improvements and
additional features.

28.21.1 The Role of 1.x

The 1.x series of releases is intended to provide a relatively stable, backwards-compatible platform based on the
CF-netCDF data model, upon which long-lived services can be built.

Iris 1.0 targets the data model implicit in CF-netCDF 1.5. This will be extended to cover the new features of CF-
netCDF 1.6 (e.g. discrete sampling geometries) and any subsequent versions which maintain backwards compatibility.
Similarly, as the efforts of the CF community to formalise their data model reach maturity, they will be included in Iris
where significant backwards-compatibility can be maintained.

28.21.2 Features

A summary of the main features added with version 1.0:

• Hybrid-pressure vertical coordinates, and the ability to load from GRIB.

• Initial support for CF-style coordinate systems.

• Use of Cartopy for mapping in matplotlib.

• Load data from NIMROD files.

• Availability of Cynthia Brewer colour palettes.

• Add a citation to a plot.

• Ensures netCDF files are properly closed.

• The ability to bypass merging when loading data.

• Save netCDF files with an unlimited dimension.

• A more explicit set of load functions, which also allow the automatic cube merging to be bypassed as a last
resort.

• The ability to project a cube with a lat-lon or rotated lat-lon coordinate system into a range of map projections
e.g. Polar Stereographic.

• Cube summaries are now more readable when the scalar coordinates contain bounds.

CF-NetCDF Coordinate Systems

The coordinate systems in Iris are now defined by the CF-netCDF grid mappings. As of Iris 1.0 a subset of the CF-
netCDF coordinate systems are supported, but this will be expanded in subsequent versions. Adding this code is a
relatively simple, incremental process - it would make a good task to tackle for users interested in getting involved in
contributing to the project.

The coordinate systems available in Iris 1.0 and their corresponding Iris classes are:

510 Chapter 28. What’s New in Iris

https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#grid-mappings-and-projections

Iris, Release 3.0.1

CF Name Iris Class
Latitude-longitude GeogCS
Rotated pole RotatedGeogCS
Transverse Mercator TransverseMercator

For convenience, Iris also includes the OSGB class which provides a simple way to create the transverse Mercator
coordinate system used by the British Ordnance Survey.

Using Cartopy for Mapping in Matplotlib

The underlying map drawing package has now been updated to use Cartopy. Cartopy provides a highly flexible set of
mapping tools, with a consistent, intuitive interface. As yet it doesn’t have feature-parity with basemap, but its goal is
to make maps “just work”, making it the perfect complement to Iris.

The iris.plot.map_setup function has now been replaced with a cleaner interface:

• To draw a cube on its native map project, one can simply draw the cube directly:

import iris.plot as iplt
import matplotlib.pyplot as plt

iplt.contourf(cube)
plt.gca().coastlines()
plt.show()

• To draw a cube on the native map and extents of another, one can use the iris.plot.
default_projection() and iris.plot.default_projection_extent() functions:

import iris.plot as iplt
import matplotlib.pyplot as plt

cube1_projection = iplt.default_projection(cube1)
cube1_extent = iplt.default_projection_extent(cube1)

ax = plt.axes(projection=cube1_projection)
ax.set_extent(cube1_extent, cube1_projection)
iplt.contourf(cube2)
ax.coastlines()
plt.show()

Note: The iris.plot.gcm function to get the current map is now redundant; instead the current map is the current
matplotlib axes, and matplotlib.pyplot.gca() should be used instead.

For more examples of what can be done with Cartopy, see the Iris gallery and Cartopy’s documentation.

28.21. v1.0 (17 Oct 2012) 511

https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_latitude_longitude
https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_rotated_pole
https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_transverse_mercator
http://www.ordnancesurvey.co.uk/
http://scitools.github.com/cartopy
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.gca.html#matplotlib.pyplot.gca
http://scitools.github.com/cartopy

Iris, Release 3.0.1

Hybrid-Pressure

With the introduction of the HybridPressureFactory class, it is now possible to represent data expressed on
a hybrid-pressure vertical coordinate. A hybrid-pressure factory is created with references to the coordinates which
provide the components of the hybrid coordinate (“ap” and “b”) and the surface pressure. In return, it provides a
virtual “pressure” coordinate whose values are derived from the given components.

This facility is utilised by the GRIB2 loader to automatically provide the derived “pressure” coordinate for certain
data1 from the ECMWF.

NetCDF

When saving a Cube to a netCDF file, Iris will now define the outermost dimension as an unlimited/record dimension.
In combination with the iris.cube.Cube.transpose() method, this allows any dimension to take the role of
the unlimited/record dimension.

For example, a Cube with the structure:

<iris 'Cube' of air_potential_temperature (time: 6; model_level_number: 70; grid_
→˓latitude: 100; grid_longitude: 100)>

would result in a netCDF file whose CDL definition would include:

dimensions:
time = UNLIMITED ; // (6 currently)
model_level_number = 70 ;
grid_latitude = 100 ;
grid_longitude = 100 ;

Also, Iris will now ensure that netCDF files are properly closed when they are no longer in use. Previously this could
cause problems when dealing with large numbers of netCDF files, or in long running processes.

Brewer Colour Palettes

Iris includes a selection of carefully designed colour palettes produced by Cynthia Brewer. The iris.palette
module registers the Brewer colour palettes with matplotlib, so they are explicitly selectable via the matplotlib.
pyplot.set_cmap() function. For example:

import iris.palette
import matplotlib.pyplot as plt
import numpy as np
plt.contourf(np.random.randn(10, 10))
plt.set_cmap('brewer_RdBu_11')
plt.show()

1 Where the level type is either 105 or 119, and where the surface pressure has an ECMWF paramId of 152.

512 Chapter 28. What’s New in Iris

https://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#_atmosphere_hybrid_sigma_pressure_coordinate
http://www.ecmwf.int/
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.set_cmap.html#matplotlib.pyplot.set_cmap
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.set_cmap.html#matplotlib.pyplot.set_cmap
https://apps.ecmwf.int/codes/grib/param-db/?id=152

Iris, Release 3.0.1

Citations

Citations can easily be added to a plot using the iris.plot.citation() function. The recommended text for
the Cynthia Brewer citation is provided by iris.plot.BREWER_CITE.

To include a reference in a journal article or report please refer to section 5 in the citation guidance provided by Cynthia
Brewer.

Metadata Attributes

Iris now stores “source” and “history” metadata in Cube attributes. For example:

>>> print(iris.tests.stock.global_pp())
air_temperature (latitude: 73; longitude: 96)

...
Attributes:

...
source: Data from Met Office Unified Model

...

Where previously it would have appeared as:

air_temperature (latitude: 73; longitude: 96)
...
Scalar coordinates:

...
source: Data from Met Office Unified Model

...

Note: This change breaks backwards compatibility with Iris 0.9. But if it is desirable to have the “source” metadata
expressed as a coordinate then it can be done with the following pattern:

src = cube.attributes.pop('source')
src_coord = iris.coords.AuxCoord(src, long_name='source')
cube.add_aux_coord(src_coord)

New Loading Functions

The main functions for loading cubes are now:

• iris.load()

• iris.load_cube()

• iris.load_cubes()

These provide convenient cube loading suitable for both interactive (iris.load()) and scripted (iris.
load_cube(), iris.load_cubes()) usage.

In addition, iris.load_raw() has been provided as a last resort for situations where the automatic cube merging
is not appropriate. However, if you find you need to use this function we would encourage you to contact the Iris
developers so we can see if a fix can be made to the cube merge algorithm.

The iris.load_strict() function has been deprecated. Code should now use the iris.load_cube() and
iris.load_cubes() functions instead.

28.21. v1.0 (17 Oct 2012) 513

http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html

Iris, Release 3.0.1

Cube Projection

Iris now has the ability to project a cube into a number of map projections. This functionality is provided by iris.
analysis.cartography.project(). For example:

import iris
import cartopy.crs as ccrs
import matplotlib.pyplot as plt

Load data
cube = iris.load_cube(iris.sample_data_path('air_temp.pp'))

Transform cube to target projection
target_proj = ccrs.RotatedPole(pole_longitude=177.5,

pole_latitude=37.5)
new_cube, extent = iris.analysis.cartography.project(cube, target_proj)

Plot
plt.axes(projection=target_proj)
plt.pcolor(new_cube.coord('projection_x_coordinate').points,

new_cube.coord('projection_y_coordinate').points,
new_cube.data)

plt.gca().coastlines()
plt.show()

This function is intended to be used in cases where the cube’s coordinates prevent one from directly visualising the
data, e.g. when the longitude and latitude are two dimensional and do not make up a regular grid. The function uses a
nearest neighbour approach rather than any form of linear/non-linear interpolation to determine the data value of each
cell in the resulting cube. Consequently it may have an adverse effect on the statistics of the data e.g. the mean and
standard deviation will not be preserved. This function currently assumes global data and will if necessary extrapolate
beyond the geographical extent of the source cube.

28.21.3 Incompatible Changes

• The “source” and “history” metadata are now represented as Cube attributes, where previously they used coor-
dinates.

• iris.cube.Cube.coord_dims() now returns a tuple instead of a list.

• The iris.plot.gcm and iris.plot.map_setup functions are now removed. See Using Cartopy for
Mapping in Matplotlib for further details.

28.21.4 Deprecations

• The methods iris.coords.Coord.cos() and iris.coords.Coord.sin() have been deprecated.

• The iris.load_strict() function has been deprecated. Code should now use the iris.load_cube()
and iris.load_cubes() functions instead.

514 Chapter 28. What’s New in Iris

CHAPTER

TWENTYNINE

IRIS TECHNICAL PAPERS

Extra information on specific technical issues.

29.1 Iris Handling of PP and Fieldsfiles

This document provides a basic account of how PP and Fieldsfiles data is represented within Iris. It describes how Iris
represents data from the Met Office Unified Model (UM), in terms of the metadata elements found in PP and Fieldsfile
formats.

For simplicity, we shall describe this mostly in terms of loading of PP data into Iris (i.e. into cubes). However most
of the details are identical for Fieldsfiles, and are relevant to saving in these formats as well as loading.

Notes:

1. Iris treats Fieldsfile data almost exactly as if it were PP – i.e. it treats each field’s lookup table entry like a PP
header.

2. The Iris data model is based on NetCDF CF conventions, so most of this can also be seen as a metadata transla-
tion between PP and CF terms, but it is easier to discuss in terms of Iris elements.

For details of Iris terms (cubes, coordinates, attributes), refer to Iris data structures.

For details of CF conventions, see http://cfconventions.org/.

29.1.1 Overview of Loading Process

The basics of Iris loading are explained at Loading Iris Cubes. Loading as it specifically applies to PP and Fieldsfile
data can be summarised as follows:

1. Input fields are first loaded from the given sources, using iris.fileformats.pp.load(). This returns
an iterator, which provides a ‘stream’ of PPField input field objects. Each PPfield object represents a single
source field:

• PP header elements are provided as named object attributes (e.g. lbproc).

• Some extra, calculated “convenience” properties are also provided (e.g. t1 and t2 time values).

• There is a iris.fileformats.pp.PPField.data attribute, but the field data is not actually
loaded unless/until this is accessed, for greater speed and space efficiency.

2. Each input field is translated into a two-dimensional Iris cube (with dimensions of latitude and longitude). These
are the ‘raw’ cubes, as returned by iris.load_raw(). Within these:

• There are 2 horizontal dimension coordinates containing the latitude and longitude values for the field.

515

http://cfconventions.org/
http://cfconventions.org/

Iris, Release 3.0.1

• Certain other header elements are interpreted as ‘coordinate’-type values applying to the input fields, and
stored as auxiliary ‘scalar’ (i.e. 1-D) coordinates. These include all header elements defining vertical and
time coordinate values, and also more specialised factors such as ensemble number and pseudo-level.

• Other metadata is encoded on the cube in a variety of other forms, such as the cube ‘name’ and ‘units’
properties, attribute values and cell methods.

3. Lastly, Iris attempts to merge the raw cubes into higher-dimensional ones (using merge()): This combines
raw cubes with different values of a scalar coordinate to produce a higher-dimensional cube with the values
contained in a new vector coordinate. Where possible, the new vector coordinate is also a dimension coordi-
nate, describing the new dimension. Apart from the original 2 horizontal dimensions, all cube dimensions and
dimension coordinates arise in this way – for example, ‘time’, ‘height’, ‘forecast_period’, ‘realization’.

Note: This document covers the essential features of the UM data loading process. The complete details are imple-
mented as follows:

• The conversion of fields to raw cubes is performed by the function iris.fileformats.pp_rules.
convert(), which is called from iris.fileformats.pp.load_cubes() during loading.

• The corresponding save functionality for PP output is implemented by the iris.fileformats.pp.
save() function. The relevant ‘save rules’ are defined in a text file (“lib/iris/etc/pp_save_rules.txt”), in a
form defined by the iris.fileformats.rules module.

The rest of this document describes various independent sections of related metadata items.

29.1.2 Horizontal Grid

UM Field elements LBCODE, BPLAT, BPLON, BZX, BZY, BDX, BDY, X, Y, X_LOWER_BOUNDS,
Y_LOWER_BOUNDS

Cube components (unrotated) : coordinates longitude, latitude

(rotated pole) : coordinates grid_latitude, grid_longitude

Details

At present, only latitude-longitude projections are supported (both normal and rotated). In these cases, LBCODE is
typically 1 or 101 (though, in fact, cross-sections with latitude and longitude axes are also supported).

For an ordinary latitude-longitude grid, the cubes have coordinates called ‘longitude’ and ‘latitude’:

• These are mapped to the appropriate data dimensions.

• They have units of ‘degrees’.

• They have a coordinate system of type iris.coord_systems.GeogCS.

• The coordinate points are normally set to the regular sequence ZDX/Y + BDX/Y * (1 .. LBNPT/
LBROW) (except, if BDX/BDY is zero, the values are taken from the extra data vector X/Y, if present).

• If X/Y_LOWER_BOUNDS extra data is available, this appears as bounds values of the horizontal coordinates.

For rotated latitude-longitude coordinates (as for LBCODE=101), the horizontal coordinates differ only slightly –

• The names are ‘grid_latitude’ and ‘grid_longitude’.

• The coord_system is a iris.coord_systems.RotatedGeogCS, created with a pole defined by BPLAT,
BPLON.

For example:

516 Chapter 29. Iris Technical Papers

Iris, Release 3.0.1

>>> # Load a PP field.
... fname = iris.sample_data_path('air_temp.pp')
>>> fields_iter = iris.fileformats.pp.load(fname)
>>> field = next(fields_iter)
>>>
>>> # Show grid details and first 5 longitude values.
>>> print(' '.join(str(_) for _ in (field.lbcode, field.lbnpt, field.bzx,
... field.bdx)))
1 96 -3.749999 3.749999
>>> print(field.bzx + field.bdx * np.arange(1, 6))
[0. 3.75 7.5 11.25 15.]
>>>
>>> # Show Iris equivalent information.
... cube = iris.load_cube(fname)
>>> print(cube.coord('longitude').points[:5])
[0. 3.75 7.5 11.25 15.]

Note: Note that in Iris (as in CF) there is no special distinction between “regular” and “irregular” coordinates. Thus
on saving, X and Y extra data sections are written only if the actual values are unevenly spaced.

29.1.3 Phenomenon Identification

UM Field elements LBFC, LBUSER4 (aka “stashcode”), LBUSER7 (aka “model code”)

Cube components cube.standard_name, cube.units, cube.attributes['STASH']

Details

This information is normally encoded in the cube standard_name property. Iris identifies the stash section and
item codes from LBUSER4 and the model code in LBUSER7, and compares these against a list of phenomenon types
with known CF translations. If the stashcode is recognised, it then defines the appropriate standard_name and
units properties of the cube (i.e. iris.cube.Cube.standard_name and iris.cube.Cube.units).

Where any parts of the stash information are outside the valid range, Iris will instead attempt to interpret LBFC, for
which a set of known translations is also stored. This is often the case for fieldsfiles, where LBUSER4 is frequently
left as 0.

In all cases, Iris also constructs a STASH item to identify the phenomenon, which is stored as a cube attribute named
STASH. This preserves the original STASH coding (as standard name translation is not always one-to-one), and can
be used when no standard_name translation is identified (for example, to load only certain stashcodes with a constraint
– see example at Load constraint examples).

For example:

>>> # Show PPfield phenomenon details.
>>> print(field.lbuser[3])
16203
>>> print(field.lbuser[6])
1
>>>
>>>
>>> # Show Iris equivalents.
>>> print(cube.standard_name)
air_temperature
>>> print(cube.units)

(continues on next page)

29.1. Iris Handling of PP and Fieldsfiles 517

Iris, Release 3.0.1

(continued from previous page)

K
>>> print(cube.attributes['STASH'])
m01s16i203

Note: On saving data, no attempt is made to translate a cube standard_name into a STASH code, but any attached
‘STASH’ attribute will be stored into the LBUSER4 and LBUSER7 elements.

29.1.4 Vertical Coordinates

UM Field elements LBVC, LBLEV, BRSVD1 (aka “bulev”), BRSVD2 (aka “bhulev”), BLEV, BRLEV, BHLEV,
BHRLEV

Cube components for height levels : coordinate height

for pressure levels : coordinate pressure

for hybrid height levels :

• coordinates model_level_number, sigma, level_height, altitude

• cube.aux_factories()[0].orography

for hybrid pressure levels :

• coordinates model_level_number, sigma, level_pressure, air_pressure

• cube.aux_factories()[0].surface_air_pressure

Details

Several vertical coordinate forms are supported, according to different values of LBVC. The commonest ones are:

• lbvc=1 : height levels

• lbvc=8 : pressure levels

• lbvc=65 : hybrid height

In all these cases, vertical coordinates are created, with points and bounds values taken from the appropriate header
elements. In the raw cubes, each vertical coordinate is just a single value, but multiple values will usually occur. The
subsequent merge operation will then convert these into multiple-valued coordinates, and create a new vertical data
dimension (i.e. a “Z” axis) which they map onto.

For height levels (LBVC=1): A height coordinate is created. This has units ‘m’, points from BLEV, and no
bounds. When there are multiple vertical levels, this will become a dimension coordinate mapping to the vertical
dimension.

For pressure levels (LBVC=8): A pressure coordinate is created. This has units ‘hPa’, points from BLEV, and
no bounds. When there are multiple vertical levels, this will become a dimension coordinate mapping a vertical
dimension.

For hybrid height levels (LBVC=65): Three basic vertical coordinates are created:

• model_level is dimensionless, with points from LBLEV and no bounds.

• sigma is dimensionless, with points from BHLEV and bounds from BHRLEV and BHULEV.

• level_height has units of ‘m’, points from BLEV and bounds from BRLEV and BULEV.

518 Chapter 29. Iris Technical Papers

Iris, Release 3.0.1

Also in this case, a HybridHeightFactory is created, which references the ‘level_height’ and ‘sigma’ coor-
dinates. Following raw cube merging, an extra load stage occurs where the attached HybridHeightFactory
is called to manufacture a new altitude coordinate:

• The altitude coordinate is 3D, mapping to the 2 horizontal dimensions and the new vertical dimension.

• Its units are ‘m’.

• Its points are calculated from those of the ‘level_height’ and ‘sigma’ coordinates, and an orography field.
If ‘sigma’ and ‘level_height’ possess bounds, then bounds are also created for ‘altitude’.

To make the altitude coordinate, there must be an orography field present in the load sources. This is a surface
altitude reference field, identified (by stashcode) during the main loading operation, and recorded for later use
in the hybrid height calculation. If it is absent, a warning message is printed, and no altitude coordinate is
produced.

Note that on merging hybrid height data into a cube, only the ‘model_level’ coordinate becomes a dimension
coordinate: The other vertical coordinates remain as auxiliary coordinates, because they may be (variously)
multidimensional or non-monotonic.

See an example printout of a hybrid height cube, here:

Notice that this contains all of the above coordinates – ‘model_level_number’, ‘sigma’, ‘level_height’ and
the derived ‘altitude’.

Note: Hybrid pressure levels can also be handled (for LBVC=9). Without going into details, the mechanism is very
similar to that for hybrid height: it produces basic coordinates ‘model_level_number’, ‘sigma’ and ‘level_pressure’,
and a manufactured 3D ‘air_pressure’ coordinate.

29.1.5 Time Information

UM Field elements

• “T1” (i.e. LBYR, LBMON, LBDAT, LBHR, LBMIN, LBDAY/LBSEC),

• “T2” (i.e. LBYRD, LBMOND, LBDATD, LBHRD, LBMIND, LBDAYD/LBSECD),

• LBTIM, LBFT

Cube components coordinates time, forecast_reference_time, forecast_period

Details

In Iris (as in CF) times and time intervals are both expressed as simple numbers, following the approach of the
UDUNITS project. These values are stored as cube coordinates, where the scaling and calendar information is con-
tained in the units property.

• The units of a time interval (e.g. ‘forecast_period’), can be ‘seconds’ or a simple derived unit such as ‘hours’ or
‘days’ – but it does not contain a calendar, so ‘months’ or ‘years’ are not valid.

• The units of calendar-based times (including ‘time’ and ‘forecast_reference_time’), are of the general form
“<time-unit> since <base-date>”, interpreted according to the unit’s calendar property. The base date for
this is always 1st Jan 1970 (times before this are represented as negative values).

The units.calendar property of time coordinates is set from the lowest decimal digit of LBTIM, known as LBTIM.IC.
Note that the non-gregorian calendars (e.g. 360-day ‘model’ calendar) are defined in CF, not udunits.

There are a number of different time encoding methods used in UM data, but the important distinctions are controlled
by the next-to-lowest decimal digit of LBTIM, known as “LBTIM.IB”. The most common cases are as follows:

29.1. Iris Handling of PP and Fieldsfiles 519

http://www.unidata.ucar.edu/software/udunits/

Iris, Release 3.0.1

Data at a single measurement timepoint (LBTIM.IB=0): A single time coordinate is created, with points taken
from T1 values. It has no bounds, units of ‘hours since 1970-01-01 00:00:00’ and a calendar defined according
to LBTIM.IC.

Values forecast from T2, valid at T1 (LBTIM.IB=1): Coordinates time` and ``forecast_reference_time
are created from the T1 and T2 values, respectively. These have no bounds, and units of ‘hours since 1970-01-01
00:00:00’, with the appropriate calendar. A forecast_period coordinate is also created, with values
T1-T2, no bounds and units of ‘hours’.

Time mean values between T1 and T2 (LBTIM.IB=2): The time coordinates time,
forecast_reference_times and forecast_reference_time, are all present, as in the pre-
vious case. In this case, however, the ‘time’ and ‘forecast_period’ coordinates also have associated bounds:
The ‘time’ bounds are from T1 to T2, and the ‘forecast_period’ bounds are from “LBFT - (T2-T1)” to “LBFT”.

Note that, in those more complex cases where the input defines all three of the ‘time’, ‘forecast_reference_time’ and
‘forecast_period’ values, any or all of these may become dimensions of the resulting data cube. This will depend on
the values actually present in the source fields for each of the elements.

See an example printout of a forecast data cube, here :

Notice that this example contains all of the above coordinates – ‘time’, ‘forecast_period’ and ‘fore-
cast_reference_time’. In this case the data are forecasts, so ‘time’ is a dimension, ‘forecast_period’ varies
with time and ‘forecast_reference_time’ is a constant.

29.1.6 Statistical Measures

UM Field elements LBPROC, LBTIM

Cube components cube.cell_methods

Details

Where a field contains statistically processed data, Iris will add an appropriate iris.coords.CellMethod to the
cube, representing the aggregation operation which was performed.

This is implemented for certain binary flag bits within the LBPROC element value. For example:

• time mean, when (LBPROC & 128): Cube has a cell_method of the form “CellMethod(‘mean’, ‘time’).

• time period minimum value, when (LBPROC & 4096): Cube has a cell_method of the form “Cell-
Method(‘minimum’, ‘time’).

• time period maximum value, when (LBPROC & 8192): Cube has a cell_method of the form “Cell-
Method(‘maximum’, ‘time’).

In all these cases, if the field LBTIM is also set to denote a time aggregate field (i.e. “LBTIM.IB=2”, see above
Time Information), then the second-to-last digit of LBTIM, aka “LBTIM.IA” may also be non-zero, in which case this
indicates the aggregation time-interval. In that case, the cell-method intervals attribute is also set to this many
hours.

For example:

>>> # Show stats metadata in a test PP field.
... fname = iris.sample_data_path('pre-industrial.pp')
>>> eg_field = next(iris.fileformats.pp.load(fname))
>>> print(eg_field.lbtim)
622
>>> print(eg_field.lbproc)
128
>>>

(continues on next page)

520 Chapter 29. Iris Technical Papers

Iris, Release 3.0.1

(continued from previous page)

>>> # Print out the Iris equivalent information.
>>> print(iris.load_cube(fname).cell_methods)
(CellMethod(method='mean', coord_names=('time',), intervals=('6 hour',),
→˓comments=()),)

29.1.7 Other Metadata

LBRSVD4

If non-zero, this is interpreted as an ensemble number. This produces a cube scalar coordinate named ‘realization’ (as
defined in the CF conventions).

LBUSER5

If non-zero, this is interpreted as a ‘pseudo_level’ number. This produces a cube scalar coordinate named
‘pseudo_level’. In the UM documentation LBUSER5 is also sometimes referred to as LBPLEV.

29.2 Missing Data Handling in Iris

This document provides a brief overview of how Iris handles missing data values when datasets are loaded as cubes,
and when cubes are saved or modified.

A missing data value, or fill-value, defines the value used within a dataset to indicate that data point is missing or not
set. This value is included as part of a dataset’s metadata.

For example, in a gridded global ocean dataset, no data values will be recorded over land, so land points will be
missing data. In such a case, land points could be indicated by being set to the dataset’s missing data value.

29.2.1 Loading

On load, any fill-value or missing data value defined in the loaded dataset should be used as the fill_value of the
NumPy masked array data attribute of the Cube. This will only appear when the cube’s data is realised.

29.2.2 Saving

On save, the fill-value of a cube’s masked data array is not used in saving data. Instead, Iris always uses the default
fill-value for the fileformat, except when a fill-value is specified by the user via a fileformat-specific saver.

For example:

>>> iris.save(my_cube, 'my_file.nc', fill_value=-99999)

Note: Not all savers accept the fill_value keyword argument.

Iris will check for and issue warnings of fill-value ‘collisions’. This basically means that whenever there are unmasked
values that would read back as masked, we issue a warning and suggest a workaround.

This will occur in the following cases:

29.2. Missing Data Handling in Iris 521

Iris, Release 3.0.1

• where masked data contains unmasked points matching the fill-value, or

• where unmasked data contains the fill-value (either the format-specific default fill-value, or a fill-value specified
by the user in the save call).

NetCDF

NetCDF is a special case, because all ordinary variable data is “potentially masked”, owing to the use of default fill
values. The default fill-value used depends on the type of the variable data.

The exceptions to this are:

• One-byte values are not masked unless the variable has an explicit _FillValue attribute. That is, there is no
default fill-value for byte types in NetCDF.

• Data may be tagged with a _NoFill attribute. This is not currently officially documented or widely imple-
mented.

• Small integers create problems by not having the exemption applied to byte data. Thus, in principle, int32
data cannot use the full range of 2**16 valid values.

29.2.3 Merging

Merged data should have a fill-value equal to that of the components, if they all have the same fill-value. If the
components have differing fill-values, a default fill-value will be used instead.

29.2.4 Other Operations

Other operations, such as Cube arithmetic operations, generally produce output with a default (NumPy) fill-value.
That is, these operations ignore the fill-values of the input(s) to the operation.

522 Chapter 29. Iris Technical Papers

CHAPTER

THIRTY

IRIS COPYRIGHT, LICENSING AND CONTRIBUTORS

30.1 Iris Code

All Iris source code, unless explicitly stated, is Copyright Iris contributors and is licensed under the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at
your option) any later version. You should find all source files with the following header:

Code License

Copyright Iris contributors

This file is part of Iris and is released under the LGPL license. See COPYING and COPYING.LESSER in the root of
the repository for full licensing details.

30.2 Iris Documentation and Examples

All documentation, examples and sample data found on this website and in source repository are licensed under the
UK’s Open Government Licence:

Documentation, example and data license

(C) British Crown Copyright 2010 - 2021

You may use and re-use the information featured on this website (not including logos) free of charge in any format or
medium, under the terms of the Open Government Licence. We encourage users to establish hypertext links to this
website.

Any email enquiries regarding the use and re-use of this information resource should be sent to:
psi@nationalarchives.gsi.gov.uk.

523

http://reference.data.gov.uk/id/open-government-licence
mailto:psi@nationalarchives.gsi.gov.uk

Iris, Release 3.0.1

524 Chapter 30. Iris Copyright, Licensing and Contributors

BIBLIOGRAPHY

[Jackson] Jackson, M. 2012. How to cite and describe software. Accessed 06-03-2013.

525

https://software.ac.uk/how-cite-software

Iris, Release 3.0.1

526 Bibliography

PYTHON MODULE INDEX

.
iris.analysis, 244
iris.analysis.calculus, 227
iris.analysis.cartography, 229
iris.analysis.geometry, 236
iris.analysis.maths, 237
iris.analysis.stats, 242
iris.analysis.trajectory, 243
iris.aux_factory, 260
iris.common, 295
iris.common.lenient, 274
iris.common.metadata, 274
iris.common.mixin, 288
iris.common.resolve, 289
iris.config, 296
iris.coord_categorisation, 297
iris.coord_systems, 301
iris.coords, 312
iris.cube, 337
iris.exceptions, 359
iris.experimental, 370
iris.experimental.animate, 363
iris.experimental.equalise_cubes, 364
iris.experimental.regrid, 364
iris.experimental.regrid_conservative,

368
iris.experimental.representation, 368
iris.experimental.stratify, 369
iris.experimental.ugrid, 370
iris.fileformats, 413
iris.fileformats.abf, 371
iris.fileformats.cf, 371
iris.fileformats.dot, 388
iris.fileformats.name, 388
iris.fileformats.name_loaders, 389
iris.fileformats.netcdf, 391
iris.fileformats.nimrod, 397
iris.fileformats.nimrod_load_rules, 398
iris.fileformats.pp, 398
iris.fileformats.pp_load_rules, 404
iris.fileformats.pp_save_rules, 405
iris.fileformats.rules, 405

iris.fileformats.um, 409
iris.fileformats.um_cf_map, 413
iris.io, 417
iris.io.format_picker, 414
iris.iterate, 420
iris.palette, 421
iris.pandas, 423
iris.plot, 424
iris.quickplot, 429
iris.std_names, 431
iris.symbols, 431
iris.time, 432
iris.util, 433

d
documenting.docstrings_attribute, 207
documenting.docstrings_sample_routine,

205

i
iris, 443

527

Iris, Release 3.0.1

528 Python Module Index

INDEX

Symbols
__binary_operator__()

(iris.coords.AncillaryVariable method), 313
__binary_operator__() (iris.coords.AuxCoord

method), 315
__binary_operator__() (iris.coords.CellMeasure

method), 322
__binary_operator__() (iris.coords.Coord

method), 325
__binary_operator__() (iris.coords.DimCoord

method), 332
__call__() (iris.analysis.maths.IFunc method), 241
__call__() (iris.common.resolve.Resolve method),

291
__call__() (iris.palette.SymmetricNormalize

method), 422
__common_cmp__() (iris.coords.Cell method), 321
__copy__() (iris.cube.Cube method), 339
__deepcopy__() (iris.coords.DimCoord method),

332
__eq__() (iris.common.metadata.AncillaryVariableMetadata

method), 275
__eq__() (iris.common.metadata.BaseMetadata

method), 277
__eq__() (iris.common.metadata.CellMeasureMetadata

method), 279
__eq__() (iris.common.metadata.CoordMetadata

method), 281
__eq__() (iris.common.metadata.CubeMetadata

method), 283
__eq__() (iris.common.metadata.DimCoordMetadata

method), 285
__eq__() (iris.coords.Cell method), 321
__exit__() (iris.fileformats.netcdf.Saver method),

395
__getattr__() (iris.fileformats.pp.PPField method),

400
__getitem__() (iris.coords.AncillaryVariable

method), 313
__getitem__() (iris.coords.AuxCoord method), 316
__getitem__() (iris.coords.CellMeasure method),

322

__getitem__() (iris.coords.Coord method), 325
__getitem__() (iris.cube.Cube method), 339
__getitem__() (iris.cube.CubeList method), 354
__getslice__() (iris.cube.CubeList method), 354
__new__() (iris.coords.Cell static method), 321
__new__() (iris.coords.CoordExtent static method),

331
__new__() (iris.cube.CubeList static method), 354
__new__() (iris.fileformats.pp.STASH static method),

403
__new__() (iris.fileformats.rules.Loader static

method), 408
__repr__() (iris.cube.CubeList method), 354
__repr__() (iris.fileformats.pp.PPField method), 400
__str__() (iris.coords.CellMethod method), 324
__str__() (iris.cube.CubeList method), 354

A
a (documenting.docstrings_attribute.ExampleClass at-

tribute), 207
ABFField (class in iris.fileformats.abf), 371
abs() (in module iris.analysis.maths), 237
add() (in module iris.analysis.maths), 237
add_ancillary_variable() (iris.cube.Cube

method), 339
add_aux_coord() (iris.cube.Cube method), 339
add_aux_factory() (iris.cube.Cube method), 340
add_categorised_coord() (in module

iris.coord_categorisation), 298
add_cell_measure() (iris.cube.Cube method), 340
add_cell_method() (iris.cube.Cube method), 340
add_cube() (iris.fileformats.rules.ConcreteReferenceTarget

method), 406
add_day_of_month() (in module

iris.coord_categorisation), 298
add_day_of_year() (in module

iris.coord_categorisation), 298
add_dim_coord() (iris.cube.Cube method), 340
add_formula_term()

(iris.fileformats.cf.CFAncillaryDataVariable
method), 372

add_formula_term()

529

Iris, Release 3.0.1

(iris.fileformats.cf.CFAuxiliaryCoordinateVariable
method), 374

add_formula_term()
(iris.fileformats.cf.CFBoundaryVariable
method), 375

add_formula_term()
(iris.fileformats.cf.CFClimatologyVariable
method), 377

add_formula_term()
(iris.fileformats.cf.CFCoordinateVariable
method), 378

add_formula_term()
(iris.fileformats.cf.CFDataVariable method),
379

add_formula_term()
(iris.fileformats.cf.CFGridMappingVariable
method), 381

add_formula_term()
(iris.fileformats.cf.CFLabelVariable method),
383

add_formula_term()
(iris.fileformats.cf.CFMeasureVariable
method), 385

add_formula_term()
(iris.fileformats.cf.CFVariable method), 386

add_hour() (in module iris.coord_categorisation),
298

add_month() (in module iris.coord_categorisation),
299

add_month_fullname() (in module
iris.coord_categorisation), 299

add_month_number() (in module
iris.coord_categorisation), 299

add_saver() (in module iris.io), 417
add_season() (in module iris.coord_categorisation),

299
add_season_membership() (in module

iris.coord_categorisation), 299
add_season_number() (in module

iris.coord_categorisation), 299
add_season_year() (in module

iris.coord_categorisation), 300
add_spec() (iris.io.format_picker.FormatAgent

method), 415
add_weekday() (in module

iris.coord_categorisation), 300
add_weekday_fullname() (in module

iris.coord_categorisation), 300
add_weekday_number() (in module

iris.coord_categorisation), 300
add_year() (in module iris.coord_categorisation),

300
aggregate() (iris.analysis.Aggregator method), 252
aggregate() (iris.analysis.WeightedAggregator

method), 253
aggregate_shape() (iris.analysis.Aggregator

method), 252
aggregate_shape()

(iris.analysis.WeightedAggregator method),
254

aggregated_by() (iris.cube.Cube method), 340
Aggregator (class in iris.analysis), 251
AlbersEqualArea (class in iris.coord_systems), 301
ancillary_variable() (iris.cube.Cube method),

341
ancillary_variable_dims() (iris.cube.Cube

method), 341
ancillary_variables() (iris.cube.Cube method),

341
ancillary_variables()

(iris.fileformats.cf.CFGroup property), 382
AncillaryVariable (class in iris.coords), 313
AncillaryVariableMetadata (class in

iris.common.metadata), 275
AncillaryVariableNotFoundError (class in

iris.exceptions), 360
animate() (in module iris.experimental.animate), 363
append() (iris.cube.CubeList method), 354
append() (iris.fileformats.netcdf.CFNameCoordMap

method), 394
apply_ufunc() (in module iris.analysis.maths), 237
approx_equal() (in module iris.util), 434
area_weights() (in module

iris.analysis.cartography), 229
AreaWeighted (class in iris.analysis), 257
args (iris.exceptions.AncillaryVariableNotFoundError

attribute), 360
args (iris.exceptions.CellMeasureNotFoundError at-

tribute), 360
args (iris.exceptions.ConcatenateError attribute), 360
args (iris.exceptions.ConstraintMismatchError at-

tribute), 360
args (iris.exceptions.CoordinateCollapseError at-

tribute), 360
args (iris.exceptions.CoordinateMultiDimError at-

tribute), 361
args (iris.exceptions.CoordinateNotFoundError at-

tribute), 361
args (iris.exceptions.CoordinateNotRegularError at-

tribute), 361
args (iris.exceptions.DuplicateDataError attribute),

361
args (iris.exceptions.IgnoreCubeException attribute),

361
args (iris.exceptions.InvalidCubeError attribute), 362
args (iris.exceptions.IrisError attribute), 362
args (iris.exceptions.LazyAggregatorError attribute),

362

530 Index

Iris, Release 3.0.1

args (iris.exceptions.MergeError attribute), 362
args (iris.exceptions.NotYetImplementedError at-

tribute), 362
args (iris.exceptions.TranslationError attribute), 363
args (iris.exceptions.UnitConversionError attribute),

363
args (iris.fileformats.netcdf.UnknownCellMethodWarning

attribute), 397
args (iris.IrisDeprecation attribute), 449
args() (iris.fileformats.rules.Factory property), 407
array_equal() (in module iris.util), 434
as_cartopy_crs() (iris.coord_systems.AlbersEqualArea

method), 301
as_cartopy_crs() (iris.coord_systems.CoordSystem

method), 302
as_cartopy_crs() (iris.coord_systems.GeogCS

method), 303
as_cartopy_crs() (iris.coord_systems.Geostationary

method), 304
as_cartopy_crs() (iris.coord_systems.LambertAzimuthalEqualArea

method), 305
as_cartopy_crs() (iris.coord_systems.LambertConformal

method), 306
as_cartopy_crs() (iris.coord_systems.Mercator

method), 307
as_cartopy_crs() (iris.coord_systems.Orthographic

method), 308
as_cartopy_crs() (iris.coord_systems.OSGB

method), 307
as_cartopy_crs() (iris.coord_systems.RotatedGeogCS

method), 309
as_cartopy_crs() (iris.coord_systems.Stereographic

method), 309
as_cartopy_crs() (iris.coord_systems.TransverseMercator

method), 311
as_cartopy_crs() (iris.coord_systems.VerticalPerspective

method), 312
as_cartopy_globe() (iris.coord_systems.GeogCS

method), 303
as_cartopy_projection()

(iris.coord_systems.AlbersEqualArea method),
301

as_cartopy_projection()
(iris.coord_systems.CoordSystem method),
302

as_cartopy_projection()
(iris.coord_systems.GeogCS method), 303

as_cartopy_projection()
(iris.coord_systems.Geostationary method),
304

as_cartopy_projection()
(iris.coord_systems.LambertAzimuthalEqualArea
method), 305

as_cartopy_projection()

(iris.coord_systems.LambertConformal
method), 306

as_cartopy_projection()
(iris.coord_systems.Mercator method), 307

as_cartopy_projection()
(iris.coord_systems.Orthographic method),
308

as_cartopy_projection()
(iris.coord_systems.OSGB method), 307

as_cartopy_projection()
(iris.coord_systems.RotatedGeogCS method),
309

as_cartopy_projection()
(iris.coord_systems.Stereographic method),
309

as_cartopy_projection()
(iris.coord_systems.TransverseMercator
method), 311

as_cartopy_projection()
(iris.coord_systems.VerticalPerspective
method), 312

as_compatible_shape() (in module iris.util), 434
as_cube() (in module iris.pandas), 423
as_cube() (iris.fileformats.rules.ConcreteReferenceTarget

method), 406
as_data_frame() (in module iris.pandas), 423
as_fields() (in module iris.fileformats.pp), 401
as_series() (in module iris.pandas), 424
AttributeConstraint (class in iris), 447
attributes() (iris.aux_factory.AuxCoordFactory

property), 262
attributes() (iris.aux_factory.HybridHeightFactory

property), 263
attributes() (iris.aux_factory.HybridPressureFactory

property), 265
attributes() (iris.aux_factory.OceanSFactory prop-

erty), 267
attributes() (iris.aux_factory.OceanSg1Factory

property), 268
attributes() (iris.aux_factory.OceanSg2Factory

property), 270
attributes() (iris.aux_factory.OceanSigmaFactory

property), 271
attributes() (iris.aux_factory.OceanSigmaZFactory

property), 273
attributes() (iris.common.metadata.AncillaryVariableMetadata

property), 277
attributes() (iris.common.metadata.BaseMetadata

property), 279
attributes() (iris.common.metadata.CellMeasureMetadata

property), 281
attributes() (iris.common.metadata.CoordMetadata

property), 283
attributes() (iris.common.metadata.CubeMetadata

Index 531

Iris, Release 3.0.1

property), 285
attributes() (iris.common.metadata.DimCoordMetadata

property), 287
attributes() (iris.common.mixin.CFVariableMixin

property), 288
attributes() (iris.coords.AncillaryVariable prop-

erty), 314
attributes() (iris.coords.AuxCoord property), 319
attributes() (iris.coords.CellMeasure property),

323
attributes() (iris.coords.Coord property), 329
attributes() (iris.coords.DimCoord property), 336
attributes() (iris.cube.Cube property), 353
attributes() (iris.fileformats.rules.ConversionMetadata

property), 407
auto_palette() (in module iris.palette), 421
autoscale() (iris.palette.SymmetricNormalize

method), 422
autoscale_None() (iris.palette.SymmetricNormalize

method), 422
aux_coords() (iris.cube.Cube property), 353
aux_coords_and_dims()

(iris.fileformats.rules.ConversionMetadata
property), 407

aux_factories() (iris.cube.Cube property), 353
aux_factory() (in module iris.fileformats.rules), 405
aux_factory() (iris.cube.Cube method), 342
AuxCoord (class in iris.coords), 315
AuxCoordFactory (class in iris.aux_factory), 261
auxiliary_coordinates()

(iris.fileformats.cf.CFGroup property), 382

B
b (documenting.docstrings_attribute.ExampleClass at-

tribute), 207
BaseMetadata (class in iris.common.metadata), 277
between() (in module iris.util), 434
bmdi() (iris.fileformats.um.FieldCollation property),

412
bound() (iris.coords.Cell property), 321
bounds() (iris.coords.AuxCoord property), 319
bounds() (iris.coords.Coord property), 329
bounds() (iris.coords.DimCoord property), 336
bounds() (iris.fileformats.cf.CFGroup property), 382
bounds_dtype() (iris.coords.AuxCoord property),

320
bounds_dtype() (iris.coords.Coord property), 329
bounds_dtype() (iris.coords.DimCoord property),

336
broadcast_to_shape() (in module iris.util), 435

C
calendar() (iris.fileformats.pp.PPField property),

401

category_common (iris.common.resolve.Resolve at-
tribute), 292

Cell (class in iris.coords), 321
cell() (iris.coords.AuxCoord method), 316
cell() (iris.coords.Coord method), 325
cell() (iris.coords.DimCoord method), 332
cell_measure() (iris.cube.Cube method), 342
cell_measure_dims() (iris.cube.Cube method),

342
cell_measures() (iris.cube.Cube method), 342
cell_measures() (iris.fileformats.cf.CFGroup prop-

erty), 382
cell_methods() (iris.common.metadata.CubeMetadata

property), 285
cell_methods() (iris.cube.Cube property), 353
cell_methods() (iris.fileformats.rules.ConversionMetadata

property), 407
CellMeasure (class in iris.coords), 322
CellMeasureMetadata (class in

iris.common.metadata), 279
CellMeasureNotFoundError (class in

iris.exceptions), 360
CellMethod (class in iris.coords), 324
cells() (iris.coords.AuxCoord method), 316
cells() (iris.coords.Coord method), 326
cells() (iris.coords.DimCoord method), 332
central_lat (iris.coord_systems.LambertConformal

attribute), 306
central_lat (iris.coord_systems.Stereographic at-

tribute), 310
central_lon (iris.coord_systems.LambertConformal

attribute), 306
central_lon (iris.coord_systems.Stereographic at-

tribute), 310
cf_attrs() (iris.fileformats.cf.CFAncillaryDataVariable

method), 372
cf_attrs() (iris.fileformats.cf.CFAuxiliaryCoordinateVariable

method), 374
cf_attrs() (iris.fileformats.cf.CFBoundaryVariable

method), 375
cf_attrs() (iris.fileformats.cf.CFClimatologyVariable

method), 377
cf_attrs() (iris.fileformats.cf.CFCoordinateVariable

method), 378
cf_attrs() (iris.fileformats.cf.CFDataVariable

method), 379
cf_attrs() (iris.fileformats.cf.CFGridMappingVariable

method), 381
cf_attrs() (iris.fileformats.cf.CFLabelVariable

method), 383
cf_attrs() (iris.fileformats.cf.CFMeasureVariable

method), 385
cf_attrs() (iris.fileformats.cf.CFVariable method),

386

532 Index

Iris, Release 3.0.1

cf_attrs_ignored()
(iris.fileformats.cf.CFAncillaryDataVariable
method), 372

cf_attrs_ignored()
(iris.fileformats.cf.CFAuxiliaryCoordinateVariable
method), 374

cf_attrs_ignored()
(iris.fileformats.cf.CFBoundaryVariable
method), 375

cf_attrs_ignored()
(iris.fileformats.cf.CFClimatologyVariable
method), 377

cf_attrs_ignored()
(iris.fileformats.cf.CFCoordinateVariable
method), 378

cf_attrs_ignored()
(iris.fileformats.cf.CFDataVariable method),
379

cf_attrs_ignored()
(iris.fileformats.cf.CFGridMappingVariable
method), 381

cf_attrs_ignored()
(iris.fileformats.cf.CFLabelVariable method),
383

cf_attrs_ignored()
(iris.fileformats.cf.CFMeasureVariable
method), 385

cf_attrs_ignored()
(iris.fileformats.cf.CFVariable method), 386

cf_attrs_reset() (iris.fileformats.cf.CFAncillaryDataVariable
method), 372

cf_attrs_reset() (iris.fileformats.cf.CFAuxiliaryCoordinateVariable
method), 374

cf_attrs_reset() (iris.fileformats.cf.CFBoundaryVariable
method), 375

cf_attrs_reset() (iris.fileformats.cf.CFClimatologyVariable
method), 377

cf_attrs_reset() (iris.fileformats.cf.CFCoordinateVariable
method), 378

cf_attrs_reset() (iris.fileformats.cf.CFDataVariable
method), 379

cf_attrs_reset() (iris.fileformats.cf.CFGridMappingVariable
method), 381

cf_attrs_reset() (iris.fileformats.cf.CFLabelVariable
method), 383

cf_attrs_reset() (iris.fileformats.cf.CFMeasureVariable
method), 385

cf_attrs_reset() (iris.fileformats.cf.CFVariable
method), 386

cf_attrs_unused()
(iris.fileformats.cf.CFAncillaryDataVariable
method), 372

cf_attrs_unused()
(iris.fileformats.cf.CFAuxiliaryCoordinateVariable

method), 374
cf_attrs_unused()

(iris.fileformats.cf.CFBoundaryVariable
method), 375

cf_attrs_unused()
(iris.fileformats.cf.CFClimatologyVariable
method), 377

cf_attrs_unused()
(iris.fileformats.cf.CFCoordinateVariable
method), 378

cf_attrs_unused()
(iris.fileformats.cf.CFDataVariable method),
379

cf_attrs_unused()
(iris.fileformats.cf.CFGridMappingVariable
method), 381

cf_attrs_unused()
(iris.fileformats.cf.CFLabelVariable method),
383

cf_attrs_unused()
(iris.fileformats.cf.CFMeasureVariable
method), 385

cf_attrs_unused() (iris.fileformats.cf.CFVariable
method), 386

cf_attrs_used() (iris.fileformats.cf.CFAncillaryDataVariable
method), 372

cf_attrs_used() (iris.fileformats.cf.CFAuxiliaryCoordinateVariable
method), 374

cf_attrs_used() (iris.fileformats.cf.CFBoundaryVariable
method), 375

cf_attrs_used() (iris.fileformats.cf.CFClimatologyVariable
method), 377

cf_attrs_used() (iris.fileformats.cf.CFCoordinateVariable
method), 378

cf_attrs_used() (iris.fileformats.cf.CFDataVariable
method), 380

cf_attrs_used() (iris.fileformats.cf.CFGridMappingVariable
method), 381

cf_attrs_used() (iris.fileformats.cf.CFLabelVariable
method), 383

cf_attrs_used() (iris.fileformats.cf.CFMeasureVariable
method), 385

cf_attrs_used() (iris.fileformats.cf.CFVariable
method), 387

cf_data (iris.fileformats.cf.CFVariable attribute), 387
cf_group (iris.fileformats.cf.CFReader attribute), 386
cf_group (iris.fileformats.cf.CFVariable attribute), 387
cf_identity (iris.fileformats.cf.CFAncillaryDataVariable

attribute), 373
cf_identity (iris.fileformats.cf.CFAuxiliaryCoordinateVariable

attribute), 375
cf_identity (iris.fileformats.cf.CFBoundaryVariable

attribute), 376
cf_identity (iris.fileformats.cf.CFClimatologyVariable

Index 533

Iris, Release 3.0.1

attribute), 378
cf_identity (iris.fileformats.cf.CFCoordinateVariable

attribute), 379
cf_identity (iris.fileformats.cf.CFDataVariable at-

tribute), 380
cf_identity (iris.fileformats.cf.CFGridMappingVariable

attribute), 382
cf_identity (iris.fileformats.cf.CFLabelVariable at-

tribute), 384
cf_identity (iris.fileformats.cf.CFMeasureVariable

attribute), 386
cf_identity (iris.fileformats.cf.CFVariable at-

tribute), 387
cf_label_data() (iris.fileformats.cf.CFLabelVariable

method), 384
cf_label_dimensions()

(iris.fileformats.cf.CFLabelVariable method),
384

cf_measure (iris.fileformats.cf.CFMeasureVariable
attribute), 386

cf_name (iris.fileformats.cf.CFVariable attribute), 387
cf_terms_by_root (iris.fileformats.cf.CFVariable

attribute), 387
cf_valid_var_name()

(iris.fileformats.netcdf.Saver static method),
395

CFAncillaryDataVariable (class in
iris.fileformats.cf), 372

CFAuxiliaryCoordinateVariable (class in
iris.fileformats.cf), 373

CFBoundaryVariable (class in iris.fileformats.cf),
375

CFClimatologyVariable (class in
iris.fileformats.cf), 376

CFCoordinateVariable (class in
iris.fileformats.cf), 378

CFDataVariable (class in iris.fileformats.cf), 379
CFGridMappingVariable (class in

iris.fileformats.cf), 380
CFGroup (class in iris.fileformats.cf), 382
CFLabelVariable (class in iris.fileformats.cf), 383
CFMeasureVariable (class in iris.fileformats.cf),

385
CFName (class in iris.fileformats.um_cf_map), 413
CFNameCoordMap (class in iris.fileformats.netcdf),

394
CFReader (class in iris.fileformats.cf), 386
CFVariable (class in iris.fileformats.cf), 386
CFVariableMixin (class in iris.common.mixin), 288
check_attribute_compliance()

(iris.fileformats.netcdf.Saver static method),
395

circular() (iris.common.metadata.DimCoordMetadata
property), 287

circular() (iris.coords.DimCoord property), 337
citation() (in module iris.plot), 425
clear() (iris.cube.CubeList method), 354
clear() (iris.fileformats.cf.CFGroup method), 382
clear_phenomenon_identity() (in module

iris.analysis), 255
climatological() (iris.aux_factory.AuxCoordFactory

property), 262
climatological() (iris.aux_factory.HybridHeightFactory

property), 263
climatological() (iris.aux_factory.HybridPressureFactory

property), 265
climatological() (iris.aux_factory.OceanSFactory

property), 267
climatological() (iris.aux_factory.OceanSg1Factory

property), 268
climatological() (iris.aux_factory.OceanSg2Factory

property), 270
climatological() (iris.aux_factory.OceanSigmaFactory

property), 271
climatological() (iris.aux_factory.OceanSigmaZFactory

property), 273
climatological() (iris.common.metadata.CoordMetadata

property), 283
climatological() (iris.common.metadata.DimCoordMetadata

property), 287
climatological() (iris.coords.AuxCoord property),

320
climatological() (iris.coords.Coord property),

329
climatological() (iris.coords.DimCoord prop-

erty), 337
climatology() (iris.fileformats.cf.CFGroup prop-

erty), 382
clip_string() (in module iris.util), 435
CLOUD_COVER (in module iris.symbols), 431
cmap_norm() (in module iris.palette), 421
collapsed() (iris.coords.AuxCoord method), 316
collapsed() (iris.coords.Coord method), 326
collapsed() (iris.coords.DimCoord method), 332
collapsed() (iris.cube.Cube method), 342
column_slices_generator() (in module

iris.util), 436
combine() (iris.common.metadata.AncillaryVariableMetadata

method), 275
combine() (iris.common.metadata.BaseMetadata

method), 277
combine() (iris.common.metadata.CellMeasureMetadata

method), 279
combine() (iris.common.metadata.CoordMetadata

method), 281
combine() (iris.common.metadata.CubeMetadata

method), 283
combine() (iris.common.metadata.DimCoordMetadata

534 Index

Iris, Release 3.0.1

method), 285
comments (iris.coords.CellMethod attribute), 324
concatenate() (iris.cube.CubeList method), 354
concatenate_cube() (iris.cube.CubeList method),

356
ConcatenateError (class in iris.exceptions), 360
ConcreteReferenceTarget (class in

iris.fileformats.rules), 406
Constraint (class in iris), 447
ConstraintMismatchError (class in

iris.exceptions), 360
contains_point() (iris.coords.Cell method), 321
context() (iris.common.lenient.Lenient method), 274
context() (iris.config.NetCDF method), 297
context() (iris.Future method), 449
contiguous_bounds() (iris.coords.AuxCoord

method), 316
contiguous_bounds() (iris.coords.Coord method),

326
contiguous_bounds() (iris.coords.DimCoord

method), 333
contour() (in module iris.plot), 425
contour() (in module iris.quickplot), 429
contourf() (in module iris.plot), 425
contourf() (in module iris.quickplot), 430
ConversionMetadata (class in

iris.fileformats.rules), 406
convert() (in module iris.fileformats.pp_load_rules),

404
convert_units() (iris.coords.AncillaryVariable

method), 313
convert_units() (iris.coords.AuxCoord method),

316
convert_units() (iris.coords.CellMeasure method),

322
convert_units() (iris.coords.Coord method), 326
convert_units() (iris.coords.DimCoord method),

333
convert_units() (iris.cube.Cube method), 344
converter() (iris.fileformats.rules.Loader property),

408
Coord (class in iris.coords), 325
coord() (iris.cube.Cube method), 344
coord() (iris.fileformats.netcdf.CFNameCoordMap

method), 394
coord_dims() (iris.cube.Cube method), 344
coord_names (iris.coords.CellMethod attribute), 324
coord_system() (iris.aux_factory.AuxCoordFactory

property), 262
coord_system() (iris.aux_factory.HybridHeightFactory

property), 263
coord_system() (iris.aux_factory.HybridPressureFactory

property), 265
coord_system() (iris.aux_factory.OceanSFactory

property), 267
coord_system() (iris.aux_factory.OceanSg1Factory

property), 268
coord_system() (iris.aux_factory.OceanSg2Factory

property), 270
coord_system() (iris.aux_factory.OceanSigmaFactory

property), 271
coord_system() (iris.aux_factory.OceanSigmaZFactory

property), 273
coord_system() (iris.common.metadata.CoordMetadata

property), 283
coord_system() (iris.common.metadata.DimCoordMetadata

property), 287
coord_system() (iris.coords.AuxCoord property),

320
coord_system() (iris.coords.Coord property), 330
coord_system() (iris.coords.DimCoord property),

337
coord_system() (iris.cube.Cube method), 344
coord_system() (iris.fileformats.pp.PPField

method), 400
CoordExtent (class in iris.coords), 330
CoordinateCollapseError (class in

iris.exceptions), 360
CoordinateMultiDimError (class in

iris.exceptions), 361
CoordinateNotFoundError (class in

iris.exceptions), 361
CoordinateNotRegularError (class in

iris.exceptions), 361
coordinates() (iris.fileformats.cf.CFGroup prop-

erty), 382
CoordMetadata (class in iris.common.metadata), 281
coords() (iris.cube.Cube method), 345
coords() (iris.fileformats.netcdf.CFNameCoordMap

property), 394
coords() (iris.plot.PlotDefn property), 429
CoordSystem (class in iris.coord_systems), 302
copy() (iris.coords.AncillaryVariable method), 313
copy() (iris.coords.AuxCoord method), 316
copy() (iris.coords.CellMeasure method), 322
copy() (iris.coords.Coord method), 326
copy() (iris.coords.DimCoord method), 333
copy() (iris.cube.Cube method), 345
copy() (iris.cube.CubeList method), 356
copy() (iris.fileformats.pp.PPField method), 400
core_bounds() (iris.coords.AuxCoord method), 317
core_bounds() (iris.coords.Coord method), 326
core_bounds() (iris.coords.DimCoord method), 333
core_data() (iris.coords.AncillaryVariable method),

313
core_data() (iris.coords.CellMeasure method), 322
core_data() (iris.cube.Cube method), 346
core_data() (iris.fileformats.pp.PPField method),

Index 535

Iris, Release 3.0.1

401
core_data() (iris.fileformats.um.FieldCollation

method), 412
core_points() (iris.coords.AuxCoord method), 317
core_points() (iris.coords.Coord method), 327
core_points() (iris.coords.DimCoord method), 333
cosine_latitude_weights() (in module

iris.analysis.cartography), 230
COUNT (in module iris.analysis), 245
count() (iris.analysis.cartography.DistanceDifferential

method), 235
count() (iris.analysis.cartography.PartialDifferential

method), 235
count() (iris.common.metadata.AncillaryVariableMetadata

method), 275
count() (iris.common.metadata.BaseMetadata

method), 277
count() (iris.common.metadata.CellMeasureMetadata

method), 279
count() (iris.common.metadata.CoordMetadata

method), 281
count() (iris.common.metadata.CubeMetadata

method), 283
count() (iris.common.metadata.DimCoordMetadata

method), 286
count() (iris.coords.Cell method), 321
count() (iris.coords.CoordExtent method), 331
count() (iris.cube.CubeList method), 356
count() (iris.fileformats.name_loaders.NAMECoord

method), 390
count() (iris.fileformats.pp.STASH method), 404
count() (iris.fileformats.rules.ConversionMetadata

method), 406
count() (iris.fileformats.rules.Factory method), 407
count() (iris.fileformats.rules.Loader method), 408
count() (iris.fileformats.rules.ReferenceTarget

method), 408
count() (iris.fileformats.um_cf_map.CFName

method), 413
count() (iris.plot.PlotDefn method), 429
create_temp_filename() (in module iris.util),

436
Cube (class in iris.cube), 338
cube() (iris.common.resolve.Resolve method), 291
cube_delta() (in module iris.analysis.calculus), 227
cube_dims() (iris.coords.AncillaryVariable method),

313
cube_dims() (iris.coords.AuxCoord method), 317
cube_dims() (iris.coords.CellMeasure method), 322
cube_dims() (iris.coords.Coord method), 327
cube_dims() (iris.coords.DimCoord method), 333
cube_text() (in module iris.fileformats.dot), 388
CubeList (class in iris.cube), 354
CubeListRepresentation (class in

iris.experimental.representation), 368
CubeMetadata (class in iris.common.metadata), 283
CubeRepresentation (class in

iris.experimental.representation), 369
curl() (in module iris.analysis.calculus), 228

D
data() (iris.coords.AncillaryVariable property), 314
data() (iris.coords.CellMeasure property), 323
data() (iris.cube.Cube property), 353
data() (iris.fileformats.pp.PPField property), 401
data() (iris.fileformats.um.FieldCollation property),

412
data_field_indices()

(iris.fileformats.um.FieldCollation property),
412

data_filepath() (iris.fileformats.um.FieldCollation
property), 413

data_proxy() (iris.fileformats.um.FieldCollation
property), 413

data_variables() (iris.fileformats.cf.CFGroup
property), 382

day (iris.time.PartialDateTime attribute), 432
decode_uri() (in module iris.io), 417
DEFAULT_NAME (iris.common.metadata.AncillaryVariableMetadata

attribute), 277
DEFAULT_NAME (iris.common.metadata.BaseMetadata

attribute), 279
DEFAULT_NAME (iris.common.metadata.CellMeasureMetadata

attribute), 281
DEFAULT_NAME (iris.common.metadata.CoordMetadata

attribute), 283
DEFAULT_NAME (iris.common.metadata.CubeMetadata

attribute), 285
DEFAULT_NAME (iris.common.metadata.DimCoordMetadata

attribute), 287
default_projection() (in module iris.plot), 425
default_projection_extent() (in module

iris.plot), 426
delta() (in module iris.util), 436
demote_dim_coord_to_aux_coord() (in mod-

ule iris.util), 437
dependencies() (iris.aux_factory.AuxCoordFactory

property), 262
dependencies() (iris.aux_factory.HybridHeightFactory

property), 263
dependencies() (iris.aux_factory.HybridPressureFactory

property), 265
dependencies() (iris.aux_factory.OceanSFactory

property), 267
dependencies() (iris.aux_factory.OceanSg1Factory

property), 268
dependencies() (iris.aux_factory.OceanSg2Factory

property), 270

536 Index

Iris, Release 3.0.1

dependencies() (iris.aux_factory.OceanSigmaFactory
property), 271

dependencies() (iris.aux_factory.OceanSigmaZFactory
property), 273

deprecated_options (iris.Future attribute), 449
derived_coords() (iris.cube.Cube property), 353
derived_dims() (iris.aux_factory.AuxCoordFactory

method), 261
derived_dims() (iris.aux_factory.HybridHeightFactory

method), 262
derived_dims() (iris.aux_factory.HybridPressureFactory

method), 264
derived_dims() (iris.aux_factory.OceanSFactory

method), 266
derived_dims() (iris.aux_factory.OceanSg1Factory

method), 267
derived_dims() (iris.aux_factory.OceanSg2Factory

method), 269
derived_dims() (iris.aux_factory.OceanSigmaFactory

method), 270
derived_dims() (iris.aux_factory.OceanSigmaZFactory

method), 272
describe_diff() (in module iris.util), 437
difference() (iris.common.metadata.AncillaryVariableMetadata

method), 275
difference() (iris.common.metadata.BaseMetadata

method), 277
difference() (iris.common.metadata.CellMeasureMetadata

method), 279
difference() (iris.common.metadata.CoordMetadata

method), 281
difference() (iris.common.metadata.CubeMetadata

method), 284
difference() (iris.common.metadata.DimCoordMetadata

method), 286
differentiate() (in module iris.analysis.calculus),

227
dim_coords() (iris.cube.Cube property), 353
dim_coords_and_dims()

(iris.fileformats.rules.ConversionMetadata
property), 407

DimCoord (class in iris.coords), 331
DimCoordMetadata (class in iris.common.metadata),

285
dimension() (iris.fileformats.name_loaders.NAMECoord

property), 390
DistanceDifferential (class in

iris.analysis.cartography), 235
divide() (in module iris.analysis.maths), 238
documenting.docstrings_attribute

module, 207
documenting.docstrings_sample_routine

module, 205
dtype (iris.fileformats.netcdf.NetCDFDataProxy

attribute), 394
dtype() (iris.coords.AncillaryVariable property), 314
dtype() (iris.coords.AuxCoord property), 320
dtype() (iris.coords.CellMeasure property), 323
dtype() (iris.coords.Coord property), 330
dtype() (iris.coords.DimCoord property), 337
dtype() (iris.cube.Cube property), 354
DuplicateDataError (class in iris.exceptions), 361
dx1() (iris.analysis.cartography.DistanceDifferential

property), 235
dx1() (iris.analysis.cartography.PartialDifferential

property), 235
dx2() (iris.analysis.cartography.DistanceDifferential

property), 235
dy1() (iris.analysis.cartography.DistanceDifferential

property), 235
dy1() (iris.analysis.cartography.PartialDifferential

property), 236
dy2() (iris.analysis.cartography.DistanceDifferential

property), 235

E
EARTH_RADIUS (in module iris.fileformats.pp), 404
element_arrays_and_dims()

(iris.fileformats.um.FieldCollation property),
413

ellipsoid (iris.coord_systems.AlbersEqualArea at-
tribute), 302

ellipsoid (iris.coord_systems.Geostationary at-
tribute), 304

ellipsoid (iris.coord_systems.LambertAzimuthalEqualArea
attribute), 305

ellipsoid (iris.coord_systems.LambertConformal at-
tribute), 306

ellipsoid (iris.coord_systems.Mercator attribute),
307

ellipsoid (iris.coord_systems.Orthographic at-
tribute), 308

ellipsoid (iris.coord_systems.RotatedGeogCS
attribute), 309

ellipsoid (iris.coord_systems.Stereographic at-
tribute), 310

ellipsoid (iris.coord_systems.TransverseMercator
attribute), 311

ellipsoid (iris.coord_systems.VerticalPerspective at-
tribute), 312

equal() (iris.common.metadata.AncillaryVariableMetadata
method), 276

equal() (iris.common.metadata.BaseMetadata
method), 278

equal() (iris.common.metadata.CellMeasureMetadata
method), 280

equal() (iris.common.metadata.CoordMetadata
method), 282

Index 537

Iris, Release 3.0.1

equal() (iris.common.metadata.CubeMetadata
method), 284

equal() (iris.common.metadata.DimCoordMetadata
method), 286

equalise_attributes() (in module
iris.experimental.equalise_cubes), 364

equalise_attributes() (in module iris.util), 438
ExampleClass (class in document-

ing.docstrings_attribute), 207
exp() (in module iris.analysis.maths), 238
expand_filespecs() (in module iris.io), 418
exponentiate() (in module iris.analysis.maths), 238
extend() (iris.cube.CubeList method), 356
extract() (iris.AttributeConstraint method), 448
extract() (iris.Constraint method), 447
extract() (iris.cube.Cube method), 346
extract() (iris.cube.CubeList method), 356
extract() (iris.NameConstraint method), 448
extract_cube() (iris.cube.CubeList method), 356
extract_cubes() (iris.cube.CubeList method), 357
extract_overlapping() (iris.cube.CubeList

method), 357

F
factories() (iris.fileformats.rules.ConversionMetadata

property), 407
Factory (class in iris.fileformats.rules), 407
factory_class() (iris.fileformats.rules.Factory

property), 407
false_easting (iris.coord_systems.AlbersEqualArea

attribute), 302
false_easting (iris.coord_systems.Geostationary

attribute), 304
false_easting (iris.coord_systems.LambertAzimuthalEqualArea

attribute), 305
false_easting (iris.coord_systems.LambertConformal

attribute), 306
false_easting (iris.coord_systems.Orthographic at-

tribute), 308
false_easting (iris.coord_systems.Stereographic at-

tribute), 310
false_easting (iris.coord_systems.TransverseMercator

attribute), 311
false_easting (iris.coord_systems.VerticalPerspective

attribute), 312
false_northing (iris.coord_systems.AlbersEqualArea

attribute), 302
false_northing (iris.coord_systems.Geostationary

attribute), 304
false_northing (iris.coord_systems.LambertAzimuthalEqualArea

attribute), 305
false_northing (iris.coord_systems.LambertConformal

attribute), 306

false_northing (iris.coord_systems.Orthographic
attribute), 308

false_northing (iris.coord_systems.Stereographic
attribute), 310

false_northing (iris.coord_systems.TransverseMercator
attribute), 311

false_northing (iris.coord_systems.VerticalPerspective
attribute), 312

field_generator() (iris.fileformats.rules.Loader
property), 408

field_generator_kwargs()
(iris.fileformats.rules.Loader property), 408

FieldCollation (class in iris.fileformats.um), 412
fields() (iris.fileformats.um.FieldCollation property),

413
file_element() (iris.io.format_picker.FormatSpecification

property), 416
file_element_value()

(iris.io.format_picker.FormatSpecification
property), 416

file_is_newer_than() (in module iris.util), 438
FileElement (class in iris.io.format_picker), 415
FileExtension (class in iris.io.format_picker), 415
fill_value (iris.fileformats.netcdf.NetCDFDataProxy

attribute), 394
find_discontiguities() (in module iris.util),

439
find_saver() (in module iris.io), 418
FORMAT_AGENT (in module iris.fileformats), 413
format_array() (in module iris.util), 439
FormatAgent (class in iris.io.format_picker), 415
FormatSpecification (class in

iris.io.format_picker), 416
formula_terms() (iris.fileformats.cf.CFGroup prop-

erty), 382
from_coord() (iris.coords.AuxCoord class method),

317
from_coord() (iris.coords.Coord class method), 327
from_coord() (iris.coords.DimCoord class method),

333
from_metadata() (iris.common.metadata.AncillaryVariableMetadata

class method), 276
from_metadata() (iris.common.metadata.BaseMetadata

class method), 278
from_metadata() (iris.common.metadata.CellMeasureMetadata

class method), 280
from_metadata() (iris.common.metadata.CoordMetadata

class method), 282
from_metadata() (iris.common.metadata.CubeMetadata

class method), 284
from_metadata() (iris.common.metadata.DimCoordMetadata

class method), 286
from_msi() (iris.fileformats.pp.STASH static method),

404

538 Index

Iris, Release 3.0.1

from_regular() (iris.coords.DimCoord class
method), 333

Future (class in iris), 449
FUTURE (in module iris), 449

G
GeogCS (class in iris.coord_systems), 302
geometry_area_weights() (in module

iris.analysis.geometry), 236
Geostationary (class in iris.coord_systems), 304
get() (iris.fileformats.cf.CFGroup method), 382
get_dir_option() (in module iris.config), 296
get_element() (iris.io.format_picker.FileElement

method), 415
get_element() (iris.io.format_picker.FileExtension

method), 415
get_element() (iris.io.format_picker.LeadingLine

method), 416
get_element() (iris.io.format_picker.MagicNumber

method), 417
get_element() (iris.io.format_picker.UriProtocol

method), 417
get_logger() (in module iris.config), 296
get_option() (in module iris.config), 297
get_spec() (iris.io.format_picker.FormatAgent

method), 415
get_xy_contiguous_bounded_grids() (in

module iris.analysis.cartography), 230
get_xy_grids() (in module

iris.analysis.cartography), 230
global_attributes (iris.fileformats.cf.CFGroup at-

tribute), 383
GMEAN (in module iris.analysis), 246
grid_mapping_name

(iris.coord_systems.AlbersEqualArea at-
tribute), 302

grid_mapping_name
(iris.coord_systems.CoordSystem attribute),
302

grid_mapping_name (iris.coord_systems.GeogCS
attribute), 303

grid_mapping_name
(iris.coord_systems.Geostationary attribute),
304

grid_mapping_name
(iris.coord_systems.LambertAzimuthalEqualArea
attribute), 305

grid_mapping_name
(iris.coord_systems.LambertConformal at-
tribute), 306

grid_mapping_name (iris.coord_systems.Mercator
attribute), 307

grid_mapping_name
(iris.coord_systems.Orthographic attribute),

308
grid_mapping_name (iris.coord_systems.OSGB at-

tribute), 307
grid_mapping_name

(iris.coord_systems.RotatedGeogCS attribute),
309

grid_mapping_name
(iris.coord_systems.Stereographic attribute),
310

grid_mapping_name
(iris.coord_systems.TransverseMercator
attribute), 311

grid_mapping_name
(iris.coord_systems.VerticalPerspective at-
tribute), 312

grid_mappings() (iris.fileformats.cf.CFGroup prop-
erty), 383

grid_north_pole_latitude
(iris.coord_systems.RotatedGeogCS attribute),
309

grid_north_pole_longitude
(iris.coord_systems.RotatedGeogCS attribute),
309

gridcell_angles() (in module
iris.analysis.cartography), 231

guess_bounds() (iris.coords.AuxCoord method), 317
guess_bounds() (iris.coords.Coord method), 327
guess_bounds() (iris.coords.DimCoord method),

334
guess_coord_axis() (in module iris.util), 439

H
handler() (iris.io.format_picker.FormatSpecification

property), 416
has_aux_factory() (in module

iris.fileformats.rules), 405
has_bounds() (iris.coords.AncillaryVariable

method), 313
has_bounds() (iris.coords.AuxCoord method), 317
has_bounds() (iris.coords.CellMeasure method), 323
has_bounds() (iris.coords.Coord method), 327
has_bounds() (iris.coords.DimCoord method), 334
has_formula_terms()

(iris.fileformats.cf.CFAncillaryDataVariable
method), 373

has_formula_terms()
(iris.fileformats.cf.CFAuxiliaryCoordinateVariable
method), 374

has_formula_terms()
(iris.fileformats.cf.CFBoundaryVariable
method), 376

has_formula_terms()
(iris.fileformats.cf.CFClimatologyVariable
method), 377

Index 539

Iris, Release 3.0.1

has_formula_terms()
(iris.fileformats.cf.CFCoordinateVariable
method), 378

has_formula_terms()
(iris.fileformats.cf.CFDataVariable method),
380

has_formula_terms()
(iris.fileformats.cf.CFGridMappingVariable
method), 381

has_formula_terms()
(iris.fileformats.cf.CFLabelVariable method),
384

has_formula_terms()
(iris.fileformats.cf.CFMeasureVariable
method), 385

has_formula_terms()
(iris.fileformats.cf.CFVariable method), 387

has_lazy_bounds() (iris.coords.AuxCoord
method), 317

has_lazy_bounds() (iris.coords.Coord method),
327

has_lazy_bounds() (iris.coords.DimCoord
method), 334

has_lazy_data() (iris.coords.AncillaryVariable
method), 314

has_lazy_data() (iris.coords.CellMeasure method),
323

has_lazy_data() (iris.cube.Cube method), 346
has_lazy_points() (iris.coords.AuxCoord

method), 317
has_lazy_points() (iris.coords.Coord method),

327
has_lazy_points() (iris.coords.DimCoord

method), 334
HMEAN (in module iris.analysis), 246
hour (iris.time.PartialDateTime attribute), 432
HybridHeightFactory (class in iris.aux_factory),

262
HybridPressureFactory (class in

iris.aux_factory), 264

I
identify() (iris.fileformats.cf.CFAncillaryDataVariable

class method), 373
identify() (iris.fileformats.cf.CFAuxiliaryCoordinateVariable

class method), 374
identify() (iris.fileformats.cf.CFBoundaryVariable

class method), 376
identify() (iris.fileformats.cf.CFClimatologyVariable

class method), 377
identify() (iris.fileformats.cf.CFCoordinateVariable

class method), 379
identify() (iris.fileformats.cf.CFDataVariable class

method), 380

identify() (iris.fileformats.cf.CFGridMappingVariable
class method), 381

identify() (iris.fileformats.cf.CFLabelVariable class
method), 384

identify() (iris.fileformats.cf.CFMeasureVariable
class method), 385

identify() (iris.fileformats.cf.CFVariable method),
387

IFunc (class in iris.analysis.maths), 240
IgnoreCubeException (class in iris.exceptions),

361
index() (iris.analysis.cartography.DistanceDifferential

method), 235
index() (iris.analysis.cartography.PartialDifferential

method), 235
index() (iris.common.metadata.AncillaryVariableMetadata

method), 276
index() (iris.common.metadata.BaseMetadata

method), 278
index() (iris.common.metadata.CellMeasureMetadata

method), 280
index() (iris.common.metadata.CoordMetadata

method), 282
index() (iris.common.metadata.CubeMetadata

method), 284
index() (iris.common.metadata.DimCoordMetadata

method), 286
index() (iris.coords.Cell method), 321
index() (iris.coords.CoordExtent method), 331
index() (iris.cube.CubeList method), 357
index() (iris.fileformats.name_loaders.NAMECoord

method), 390
index() (iris.fileformats.pp.STASH method), 404
index() (iris.fileformats.rules.ConversionMetadata

method), 407
index() (iris.fileformats.rules.Factory method), 407
index() (iris.fileformats.rules.Loader method), 408
index() (iris.fileformats.rules.ReferenceTarget

method), 408
index() (iris.fileformats.um_cf_map.CFName

method), 413
index() (iris.plot.PlotDefn method), 429
insert() (iris.cube.CubeList method), 357
interpolate() (in module iris.analysis.trajectory),

243
interpolate() (iris.analysis.trajectory.Trajectory

method), 243
interpolate() (iris.cube.Cube method), 346
interpolator() (iris.analysis.Linear method), 256
interpolator() (iris.analysis.Nearest method), 258
intersect() (iris.coords.AuxCoord method), 318
intersect() (iris.coords.Coord method), 327
intersect() (iris.coords.DimCoord method), 334
intersection() (iris.cube.Cube method), 347

540 Index

Iris, Release 3.0.1

intersection_of_cubes() (in module
iris.analysis.maths), 239

intervals (iris.coords.CellMethod attribute), 324
InvalidCubeError (class in iris.exceptions), 361
inverse() (iris.palette.SymmetricNormalize method),

422
inverse_flattening (iris.coord_systems.GeogCS

attribute), 303
iris

module, 443
iris.analysis

module, 244
iris.analysis.calculus

module, 227
iris.analysis.cartography

module, 229
iris.analysis.geometry

module, 236
iris.analysis.maths

module, 237
iris.analysis.stats

module, 242
iris.analysis.trajectory

module, 243
iris.aux_factory

module, 260
iris.common

module, 295
iris.common.lenient

module, 274
iris.common.metadata

module, 274
iris.common.mixin

module, 288
iris.common.resolve

module, 289
iris.config

module, 296
iris.config.IMPORT_LOGGER (in module

iris.config), 296
iris.config.PALETTE_PATH (in module

iris.config), 296
iris.config.TEST_DATA_DIR (in module

iris.config), 296
iris.coord_categorisation

module, 297
iris.coord_systems

module, 301
iris.coords

module, 312
iris.cube

module, 337
iris.exceptions

module, 359

iris.experimental
module, 370

iris.experimental.animate
module, 363

iris.experimental.equalise_cubes
module, 364

iris.experimental.regrid
module, 364

iris.experimental.regrid_conservative
module, 368

iris.experimental.representation
module, 368

iris.experimental.stratify
module, 369

iris.experimental.ugrid
module, 370

iris.fileformats
module, 413

iris.fileformats.abf
module, 371

iris.fileformats.cf
module, 371

iris.fileformats.dot
module, 388

iris.fileformats.name
module, 388

iris.fileformats.name_loaders
module, 389

iris.fileformats.netcdf
module, 391

iris.fileformats.nimrod
module, 397

iris.fileformats.nimrod_load_rules
module, 398

iris.fileformats.pp
module, 398

iris.fileformats.pp_load_rules
module, 404

iris.fileformats.pp_save_rules
module, 405

iris.fileformats.rules
module, 405

iris.fileformats.um
module, 409

iris.fileformats.um_cf_map
module, 413

iris.io
module, 417

iris.io.format_picker
module, 414

iris.iterate
module, 420

iris.palette
module, 421

Index 541

Iris, Release 3.0.1

iris.pandas
module, 423

iris.plot
module, 424

iris.quickplot
module, 429

iris.std_names
module, 431

iris.symbols
module, 431

iris.time
module, 432

iris.util
module, 433

IrisDeprecation (class in iris), 449
IrisError (class in iris.exceptions), 362
is_brewer() (in module iris.palette), 421
is_compatible() (iris.coords.AncillaryVariable

method), 314
is_compatible() (iris.coords.AuxCoord method),

318
is_compatible() (iris.coords.CellMeasure method),

323
is_compatible() (iris.coords.Coord method), 327
is_compatible() (iris.coords.DimCoord method),

335
is_compatible() (iris.cube.Cube method), 348
is_contiguous() (iris.coords.AuxCoord method),

318
is_contiguous() (iris.coords.Coord method), 328
is_contiguous() (iris.coords.DimCoord method),

335
is_monotonic() (iris.coords.AuxCoord method), 318
is_monotonic() (iris.coords.Coord method), 328
is_monotonic() (iris.coords.DimCoord method),

335
is_regular() (in module iris.util), 440
is_valid() (iris.fileformats.pp.STASH property), 404
item() (iris.fileformats.pp.STASH property), 404
items() (iris.fileformats.cf.CFGroup method), 382
izip() (in module iris.iterate), 420

K
keys() (iris.fileformats.cf.CFGroup method), 382

L
labels() (iris.fileformats.cf.CFGroup property), 383
LambertAzimuthalEqualArea (class in

iris.coord_systems), 305
LambertConformal (class in iris.coord_systems),

306
latitude_of_projection_origin

(iris.coord_systems.AlbersEqualArea at-
tribute), 302

latitude_of_projection_origin
(iris.coord_systems.Geostationary attribute),
304

latitude_of_projection_origin
(iris.coord_systems.LambertAzimuthalEqualArea
attribute), 305

latitude_of_projection_origin
(iris.coord_systems.Orthographic attribute),
308

latitude_of_projection_origin
(iris.coord_systems.TransverseMercator
attribute), 311

latitude_of_projection_origin
(iris.coord_systems.VerticalPerspective at-
tribute), 312

lazy_aggregate() (iris.analysis.Aggregator
method), 252

lazy_aggregate() (iris.analysis.WeightedAggregator
method), 254

lazy_bounds() (iris.coords.AuxCoord method), 318
lazy_bounds() (iris.coords.Coord method), 328
lazy_bounds() (iris.coords.DimCoord method), 335
lazy_data() (iris.coords.AncillaryVariable method),

314
lazy_data() (iris.coords.CellMeasure method), 323
lazy_data() (iris.cube.Cube method), 348
lazy_points() (iris.coords.AuxCoord method), 318
lazy_points() (iris.coords.Coord method), 328
lazy_points() (iris.coords.DimCoord method), 335
LazyAggregatorError (class in iris.exceptions),

362
lbcode() (iris.fileformats.pp.PPField property), 401
lbpack() (iris.fileformats.pp.PPField property), 401
lbproc() (iris.fileformats.pp.PPField property), 401
lbtim() (iris.fileformats.pp.PPField property), 401
lbuser3() (iris.fileformats.pp.STASH method), 404
lbuser6() (iris.fileformats.pp.STASH method), 404
LeadingLine (class in iris.io.format_picker), 416
len_formats (iris.io.format_picker.MagicNumber at-

tribute), 417
Lenient (class in iris.common.lenient), 274
LENIENT (in module iris.common.lenient), 274
lhs_cube (iris.common.resolve.Resolve attribute), 292
lhs_cube_aux_coverage

(iris.common.resolve.Resolve attribute),
292

lhs_cube_category (iris.common.resolve.Resolve
attribute), 292

lhs_cube_category_local
(iris.common.resolve.Resolve attribute),
292

lhs_cube_dim_coverage
(iris.common.resolve.Resolve attribute),
292

542 Index

Iris, Release 3.0.1

lhs_cube_resolved (iris.common.resolve.Resolve
attribute), 292

Linear (class in iris.analysis), 255
LINEAR_EXTRAPOLATION_MODES

(iris.analysis.Linear attribute), 256
load() (in module iris), 444
load() (in module iris.fileformats.pp), 398
load_cube() (in module iris), 445
load_cubes() (in module iris), 445
load_cubes() (in module iris.fileformats.abf), 371
load_cubes() (in module iris.fileformats.name), 388
load_cubes() (in module iris.fileformats.netcdf), 391
load_cubes() (in module iris.fileformats.nimrod),

397
load_cubes() (in module iris.fileformats.pp), 399
load_cubes() (in module iris.fileformats.rules), 405
load_cubes() (in module iris.fileformats.um), 409
load_cubes_32bit_ieee() (in module

iris.fileformats.um), 410
load_files() (in module iris.io), 418
load_http() (in module iris.io), 418
load_NAMEII_field() (in module

iris.fileformats.name_loaders), 390
load_NAMEII_timeseries() (in module

iris.fileformats.name_loaders), 390
load_NAMEIII_field() (in module

iris.fileformats.name_loaders), 389
load_NAMEIII_timeseries() (in module

iris.fileformats.name_loaders), 389
load_NAMEIII_trajectory() (in module

iris.fileformats.name_loaders), 389
load_NAMEIII_version2() (in module

iris.fileformats.name_loaders), 389
load_pairs_from_fields() (in module

iris.fileformats.pp), 402
load_pairs_from_fields() (in module

iris.fileformats.rules), 405
load_raw() (in module iris), 445
Loader (class in iris.fileformats.rules), 407
log() (in module iris.analysis.maths), 239
log10() (in module iris.analysis.maths), 239
log2() (in module iris.analysis.maths), 239
long_name() (iris.aux_factory.AuxCoordFactory

property), 262
long_name() (iris.aux_factory.HybridHeightFactory

property), 264
long_name() (iris.aux_factory.HybridPressureFactory

property), 265
long_name() (iris.aux_factory.OceanSFactory prop-

erty), 267
long_name() (iris.aux_factory.OceanSg1Factory

property), 268
long_name() (iris.aux_factory.OceanSg2Factory

property), 270

long_name() (iris.aux_factory.OceanSigmaFactory
property), 271

long_name() (iris.aux_factory.OceanSigmaZFactory
property), 273

long_name() (iris.common.metadata.AncillaryVariableMetadata
property), 277

long_name() (iris.common.metadata.BaseMetadata
property), 279

long_name() (iris.common.metadata.CellMeasureMetadata
property), 281

long_name() (iris.common.metadata.CoordMetadata
property), 283

long_name() (iris.common.metadata.CubeMetadata
property), 285

long_name() (iris.common.metadata.DimCoordMetadata
property), 287

long_name() (iris.common.mixin.CFVariableMixin
property), 288

long_name() (iris.coords.AncillaryVariable property),
314

long_name() (iris.coords.AuxCoord property), 320
long_name() (iris.coords.CellMeasure property), 323
long_name() (iris.coords.Coord property), 330
long_name() (iris.coords.DimCoord property), 337
long_name() (iris.cube.Cube property), 354
long_name() (iris.fileformats.rules.ConversionMetadata

property), 407
long_name() (iris.fileformats.um_cf_map.CFName

property), 413
longitude_of_central_meridian

(iris.coord_systems.AlbersEqualArea at-
tribute), 302

longitude_of_central_meridian
(iris.coord_systems.TransverseMercator
attribute), 311

longitude_of_prime_meridian
(iris.coord_systems.GeogCS attribute), 303

longitude_of_projection_origin
(iris.coord_systems.Geostationary attribute),
304

longitude_of_projection_origin
(iris.coord_systems.LambertAzimuthalEqualArea
attribute), 305

longitude_of_projection_origin
(iris.coord_systems.Mercator attribute),
307

longitude_of_projection_origin
(iris.coord_systems.Orthographic attribute),
308

longitude_of_projection_origin
(iris.coord_systems.VerticalPerspective at-
tribute), 312

Index 543

Iris, Release 3.0.1

M
MagicNumber (class in iris.io.format_picker), 417
make_content() (iris.experimental.representation.CubeListRepresentation

method), 368
make_coord() (iris.aux_factory.AuxCoordFactory

method), 261
make_coord() (iris.aux_factory.HybridHeightFactory

method), 263
make_coord() (iris.aux_factory.HybridPressureFactory

method), 264
make_coord() (iris.aux_factory.OceanSFactory

method), 266
make_coord() (iris.aux_factory.OceanSg1Factory

method), 267
make_coord() (iris.aux_factory.OceanSg2Factory

method), 269
make_coord() (iris.aux_factory.OceanSigmaFactory

method), 270
make_coord() (iris.aux_factory.OceanSigmaZFactory

method), 272
map_rhs_to_lhs (iris.common.resolve.Resolve at-

tribute), 292
mapped() (iris.common.resolve.Resolve property), 293
mapping (iris.common.resolve.Resolve attribute), 294
mask_cube() (in module iris.util), 440
MAX (in module iris.analysis), 246
max_inclusive() (iris.coords.CoordExtent prop-

erty), 331
maximum() (iris.coords.CoordExtent property), 331
MEAN (in module iris.analysis), 247
measure() (iris.common.metadata.CellMeasureMetadata

property), 281
measure() (iris.coords.CellMeasure property), 323
MEDIAN (in module iris.analysis), 247
Mercator (class in iris.coord_systems), 306
merge() (iris.cube.CubeList method), 357
merge_cube() (iris.cube.CubeList method), 358
MergeError (class in iris.exceptions), 362
metadata() (iris.aux_factory.AuxCoordFactory prop-

erty), 262
metadata() (iris.aux_factory.HybridHeightFactory

property), 264
metadata() (iris.aux_factory.HybridPressureFactory

property), 265
metadata() (iris.aux_factory.OceanSFactory prop-

erty), 267
metadata() (iris.aux_factory.OceanSg1Factory prop-

erty), 268
metadata() (iris.aux_factory.OceanSg2Factory prop-

erty), 270
metadata() (iris.aux_factory.OceanSigmaFactory

property), 271
metadata() (iris.aux_factory.OceanSigmaZFactory

property), 273

metadata() (iris.common.mixin.CFVariableMixin
property), 288

metadata() (iris.coords.AncillaryVariable property),
314

metadata() (iris.coords.AuxCoord property), 320
metadata() (iris.coords.CellMeasure property), 324
metadata() (iris.coords.Coord property), 330
metadata() (iris.coords.DimCoord property), 337
metadata() (iris.cube.Cube property), 354
metadata_manager_factory() (in module

iris.common.metadata), 287
method (iris.coords.CellMethod attribute), 324
microsecond (iris.time.PartialDateTime attribute),

432
MIN (in module iris.analysis), 247
min_inclusive() (iris.coords.CoordExtent prop-

erty), 331
minimum() (iris.coords.CoordExtent property), 331
minute (iris.time.PartialDateTime attribute), 432
model() (iris.fileformats.pp.STASH property), 404
module

documenting.docstrings_attribute,
207

documenting.docstrings_sample_routine,
205

iris, 443
iris.analysis, 244
iris.analysis.calculus, 227
iris.analysis.cartography, 229
iris.analysis.geometry, 236
iris.analysis.maths, 237
iris.analysis.stats, 242
iris.analysis.trajectory, 243
iris.aux_factory, 260
iris.common, 295
iris.common.lenient, 274
iris.common.metadata, 274
iris.common.mixin, 288
iris.common.resolve, 289
iris.config, 296
iris.coord_categorisation, 297
iris.coord_systems, 301
iris.coords, 312
iris.cube, 337
iris.exceptions, 359
iris.experimental, 370
iris.experimental.animate, 363
iris.experimental.equalise_cubes,

364
iris.experimental.regrid, 364
iris.experimental.regrid_conservative,

368
iris.experimental.representation,

368

544 Index

Iris, Release 3.0.1

iris.experimental.stratify, 369
iris.experimental.ugrid, 370
iris.fileformats, 413
iris.fileformats.abf, 371
iris.fileformats.cf, 371
iris.fileformats.dot, 388
iris.fileformats.name, 388
iris.fileformats.name_loaders, 389
iris.fileformats.netcdf, 391
iris.fileformats.nimrod, 397
iris.fileformats.nimrod_load_rules,

398
iris.fileformats.pp, 398
iris.fileformats.pp_load_rules, 404
iris.fileformats.pp_save_rules, 405
iris.fileformats.rules, 405
iris.fileformats.um, 409
iris.fileformats.um_cf_map, 413
iris.io, 417
iris.io.format_picker, 414
iris.iterate, 420
iris.palette, 421
iris.pandas, 423
iris.plot, 424
iris.quickplot, 429
iris.std_names, 431
iris.symbols, 431
iris.time, 432
iris.util, 433

monotonic() (in module iris.util), 440
month (iris.time.PartialDateTime attribute), 433
multiply() (in module iris.analysis.maths), 240

N
name (iris.fileformats.rules.ConcreteReferenceTarget at-

tribute), 406
name() (iris.analysis.Aggregator method), 253
name() (iris.analysis.WeightedAggregator method), 254
name() (iris.aux_factory.AuxCoordFactory method),

261
name() (iris.aux_factory.HybridHeightFactory

method), 263
name() (iris.aux_factory.HybridPressureFactory

method), 264
name() (iris.aux_factory.OceanSFactory method), 266
name() (iris.aux_factory.OceanSg1Factory method),

267
name() (iris.aux_factory.OceanSg2Factory method),

269
name() (iris.aux_factory.OceanSigmaFactory method),

271
name() (iris.aux_factory.OceanSigmaZFactory

method), 272

name() (iris.common.metadata.AncillaryVariableMetadata
method), 276

name() (iris.common.metadata.BaseMetadata method),
278

name() (iris.common.metadata.CellMeasureMetadata
method), 280

name() (iris.common.metadata.CoordMetadata
method), 282

name() (iris.common.metadata.CubeMetadata
method), 284

name() (iris.common.metadata.DimCoordMetadata
method), 286

name() (iris.common.mixin.CFVariableMixin method),
288

name() (iris.coords.AncillaryVariable method), 314
name() (iris.coords.AuxCoord method), 319
name() (iris.coords.CellMeasure method), 323
name() (iris.coords.Coord method), 328
name() (iris.coords.DimCoord method), 335
name() (iris.cube.Cube method), 348
name() (iris.fileformats.name_loaders.NAMECoord

property), 390
name() (iris.fileformats.netcdf.CFNameCoordMap

method), 394
name() (iris.fileformats.rules.ReferenceTarget prop-

erty), 409
name() (iris.io.format_picker.FormatSpecification prop-

erty), 416
name_or_coord() (iris.coords.CoordExtent prop-

erty), 331
NameConstraint (class in iris), 448
NAMECoord (class in iris.fileformats.name_loaders),

390
names() (iris.fileformats.netcdf.CFNameCoordMap

property), 394
nbounds() (iris.coords.AuxCoord property), 320
nbounds() (iris.coords.Coord property), 330
nbounds() (iris.coords.DimCoord property), 337
ndim() (iris.coords.AncillaryVariable property), 314
ndim() (iris.coords.AuxCoord property), 320
ndim() (iris.coords.CellMeasure property), 324
ndim() (iris.coords.Coord property), 330
ndim() (iris.coords.DimCoord property), 337
ndim() (iris.cube.Cube property), 354
ndim() (iris.fileformats.netcdf.NetCDFDataProxy

property), 394
Nearest (class in iris.analysis), 257
nearest_neighbour_index()

(iris.coords.AuxCoord method), 319
nearest_neighbour_index() (iris.coords.Coord

method), 329
nearest_neighbour_index()

(iris.coords.DimCoord method), 336
NetCDF (class in iris.config), 297

Index 545

Iris, Release 3.0.1

netcdf (in module iris.config), 296
NetCDFDataProxy (class in iris.fileformats.netcdf),

394
new_axis() (in module iris.util), 440
NimrodField (class in iris.fileformats.nimrod), 398
north_pole_grid_longitude

(iris.coord_systems.RotatedGeogCS attribute),
309

NotYetImplementedError (class in
iris.exceptions), 362

O
OceanSFactory (class in iris.aux_factory), 266
OceanSg1Factory (class in iris.aux_factory), 267
OceanSg2Factory (class in iris.aux_factory), 269
OceanSigmaFactory (class in iris.aux_factory), 270
OceanSigmaZFactory (class in iris.aux_factory),

272
orography_at_bounds() (in module iris.plot), 426
orography_at_points() (in module iris.plot), 426
Orthographic (class in iris.coord_systems), 307
OSGB (class in iris.coord_systems), 307
outline() (in module iris.plot), 426
outline() (in module iris.quickplot), 430

P
parse_cell_methods() (in module

iris.fileformats.netcdf), 391
PartialDateTime (class in iris.time), 432
PartialDifferential (class in

iris.analysis.cartography), 235
path (iris.fileformats.netcdf.NetCDFDataProxy at-

tribute), 394
pcolor() (in module iris.plot), 426
pcolor() (in module iris.quickplot), 430
pcolormesh() (in module iris.plot), 427
pcolormesh() (in module iris.quickplot), 430
PEAK (in module iris.analysis), 248
pearsonr() (in module iris.analysis.stats), 242
PERCENTILE (in module iris.analysis), 248
perspective_point_height

(iris.coord_systems.Geostationary attribute),
304

perspective_point_height
(iris.coord_systems.VerticalPerspective at-
tribute), 312

plot() (in module iris.plot), 427
plot() (in module iris.quickplot), 431
PlotDefn (class in iris.plot), 429
point() (iris.coords.Cell property), 321
PointInCell (class in iris.analysis), 260
PointInCell (class in iris.experimental.regrid), 366
points() (in module iris.plot), 427
points() (in module iris.quickplot), 431

points() (iris.coords.AuxCoord property), 320
points() (iris.coords.Coord property), 330
points() (iris.coords.DimCoord property), 337
points_step() (in module iris.util), 441
pop() (iris.cube.CubeList method), 358
pop() (iris.fileformats.cf.CFGroup method), 382
popitem() (iris.fileformats.cf.CFGroup method), 382
post_process() (iris.analysis.Aggregator method),

253
post_process() (iris.analysis.WeightedAggregator

method), 254
PPField (class in iris.fileformats.pp), 400
prepared_category (iris.common.resolve.Resolve

attribute), 294
prepared_factories (iris.common.resolve.Resolve

attribute), 294
process_value() (iris.palette.SymmetricNormalize

static method), 422
project() (in module iris.analysis.cartography), 231
ProjectedUnstructuredLinear (class in

iris.experimental.regrid), 366
ProjectedUnstructuredNearest (class in

iris.experimental.regrid), 367
promote_aux_coord_to_dim_coord() (in mod-

ule iris.util), 441
promoted (iris.fileformats.cf.CFGroup attribute), 383
PROPORTION (in module iris.analysis), 248
Python Enhancement Proposals

PEP 224, 204
PEP 257, 204
PEP 517, 456, 462
PEP 518, 456, 462

Q
quiver() (in module iris.plot), 428

R
read() (iris.fileformats.nimrod.NimrodField method),

398
read_header() (in module

iris.fileformats.name_loaders), 390
realise_data() (iris.cube.CubeList method), 358
realised_dtype() (iris.fileformats.um.FieldCollation

property), 413
Reference (class in iris.fileformats.rules), 408
references() (iris.fileformats.rules.ConversionMetadata

property), 407
ReferenceTarget (class in iris.fileformats.rules),

408
regrid() (iris.cube.Cube method), 349
regrid_area_weighted_rectilinear_src_and_grid()

(in module iris.experimental.regrid), 364
regrid_conservative_via_esmpy() (in mod-

ule iris.experimental.regrid_conservative), 368

546 Index

Iris, Release 3.0.1

regrid_weighted_curvilinear_to_rectilinear()
(in module iris.experimental.regrid), 365

regridder() (iris.analysis.AreaWeighted method),
257

regridder() (iris.analysis.Linear method), 256
regridder() (iris.analysis.Nearest method), 258
regridder() (iris.analysis.PointInCell method), 260
regridder() (iris.analysis.UnstructuredNearest

method), 259
regridder() (iris.experimental.regrid.ProjectedUnstructuredLinear

method), 366
regridder() (iris.experimental.regrid.ProjectedUnstructuredNearest

method), 367
regular_step() (in module iris.util), 441
relevel() (in module iris.experimental.stratify), 369
remove() (iris.cube.CubeList method), 359
remove_ancillary_variable() (iris.cube.Cube

method), 349
remove_aux_factory() (iris.cube.Cube method),

349
remove_cell_measure() (iris.cube.Cube method),

349
remove_coord() (iris.cube.Cube method), 350
rename() (iris.aux_factory.AuxCoordFactory method),

261
rename() (iris.aux_factory.HybridHeightFactory

method), 263
rename() (iris.aux_factory.HybridPressureFactory

method), 265
rename() (iris.aux_factory.OceanSFactory method),

266
rename() (iris.aux_factory.OceanSg1Factory method),

268
rename() (iris.aux_factory.OceanSg2Factory method),

269
rename() (iris.aux_factory.OceanSigmaFactory

method), 271
rename() (iris.aux_factory.OceanSigmaZFactory

method), 272
rename() (iris.common.mixin.CFVariableMixin

method), 288
rename() (iris.coords.AncillaryVariable method), 314
rename() (iris.coords.AuxCoord method), 319
rename() (iris.coords.CellMeasure method), 323
rename() (iris.coords.Coord method), 329
rename() (iris.coords.DimCoord method), 336
rename() (iris.cube.Cube method), 350
replace_coord() (iris.cube.Cube method), 350
repr_html() (iris.experimental.representation.CubeListRepresentation

method), 368
repr_html() (iris.experimental.representation.CubeRepresentation

method), 369
Resolve (class in iris.common.resolve), 290
reverse() (in module iris.util), 441

reverse() (iris.cube.CubeList method), 359
rhs_cube (iris.common.resolve.Resolve attribute), 294
rhs_cube_aux_coverage

(iris.common.resolve.Resolve attribute),
294

rhs_cube_category (iris.common.resolve.Resolve
attribute), 294

rhs_cube_category_local
(iris.common.resolve.Resolve attribute),
294

rhs_cube_dim_coverage
(iris.common.resolve.Resolve attribute),
294

rhs_cube_resolved (iris.common.resolve.Resolve
attribute), 294

RMS (in module iris.analysis), 249
rolling_window() (in module iris.util), 442
rolling_window() (iris.cube.Cube method), 350
rotate_grid_vectors() (in module

iris.analysis.cartography), 232
rotate_pole() (in module

iris.analysis.cartography), 233
rotate_winds() (in module

iris.analysis.cartography), 233
RotatedGeogCS (class in iris.coord_systems), 308
run() (in module iris.fileformats.nimrod_load_rules),

398
run_callback() (in module iris.io), 419

S
sample_data_path() (in module iris), 448
sample_routine() (in module document-

ing.docstrings_sample_routine), 205
sampled_points (iris.analysis.trajectory.Trajectory

attribute), 244
save() (in module iris), 446
save() (in module iris.fileformats.dot), 388
save() (in module iris.fileformats.netcdf), 391
save() (in module iris.fileformats.pp), 399
save() (in module iris.io), 419
save() (iris.fileformats.pp.PPField method), 401
save_fields() (in module iris.fileformats.pp), 403
save_pairs_from_cube() (in module

iris.fileformats.pp), 402
save_png() (in module iris.fileformats.dot), 388
Saver (class in iris.fileformats.netcdf), 395
scalar_cell_method() (in module

iris.fileformats.rules), 406
scalar_coord() (in module iris.fileformats.rules),

406
scale_factor_at_central_meridian

(iris.coord_systems.TransverseMercator
attribute), 311

Index 547

Iris, Release 3.0.1

scaled() (iris.palette.SymmetricNormalize method),
423

scatter() (in module iris.plot), 428
scatter() (in module iris.quickplot), 431
secant_latitudes (iris.coord_systems.LambertConformal

attribute), 306
second (iris.time.PartialDateTime attribute), 433
section() (iris.fileformats.pp.STASH property), 404
semi_major_axis (iris.coord_systems.GeogCS at-

tribute), 303
semi_minor_axis (iris.coord_systems.GeogCS at-

tribute), 303
SERVICES (in module iris.common.metadata), 275
SERVICES_COMBINE (in module

iris.common.metadata), 275
SERVICES_DIFFERENCE (in module

iris.common.metadata), 275
SERVICES_EQUAL (in module iris.common.metadata),

275
setdefault() (iris.fileformats.cf.CFGroup method),

382
shape (iris.fileformats.netcdf.NetCDFDataProxy

attribute), 395
shape() (iris.common.resolve.Resolve property), 294
shape() (iris.coords.AncillaryVariable property), 314
shape() (iris.coords.AuxCoord property), 320
shape() (iris.coords.CellMeasure property), 324
shape() (iris.coords.Coord property), 330
shape() (iris.coords.DimCoord property), 337
shape() (iris.cube.Cube property), 354
site_configuration (in module iris), 448
slices() (iris.cube.Cube method), 351
slices_over() (iris.cube.Cube method), 352
sort() (iris.cube.CubeList method), 359
spans() (iris.fileformats.cf.CFAncillaryDataVariable

method), 373
spans() (iris.fileformats.cf.CFAuxiliaryCoordinateVariable

method), 374
spans() (iris.fileformats.cf.CFBoundaryVariable

method), 376
spans() (iris.fileformats.cf.CFClimatologyVariable

method), 377
spans() (iris.fileformats.cf.CFCoordinateVariable

method), 379
spans() (iris.fileformats.cf.CFDataVariable method),

380
spans() (iris.fileformats.cf.CFGridMappingVariable

method), 381
spans() (iris.fileformats.cf.CFLabelVariable method),

384
spans() (iris.fileformats.cf.CFMeasureVariable

method), 386
spans() (iris.fileformats.cf.CFVariable method), 387
square() (document-

ing.docstrings_attribute.ExampleClass prop-
erty), 207

squeeze() (in module iris.util), 443
standard_name() (iris.aux_factory.AuxCoordFactory

property), 262
standard_name() (iris.aux_factory.HybridHeightFactory

property), 264
standard_name() (iris.aux_factory.HybridPressureFactory

property), 265
standard_name() (iris.aux_factory.OceanSFactory

property), 267
standard_name() (iris.aux_factory.OceanSg1Factory

property), 268
standard_name() (iris.aux_factory.OceanSg2Factory

property), 270
standard_name() (iris.aux_factory.OceanSigmaFactory

property), 271
standard_name() (iris.aux_factory.OceanSigmaZFactory

property), 273
standard_name() (iris.common.metadata.AncillaryVariableMetadata

property), 277
standard_name() (iris.common.metadata.BaseMetadata

property), 279
standard_name() (iris.common.metadata.CellMeasureMetadata

property), 281
standard_name() (iris.common.metadata.CoordMetadata

property), 283
standard_name() (iris.common.metadata.CubeMetadata

property), 285
standard_name() (iris.common.metadata.DimCoordMetadata

property), 287
standard_name() (iris.common.mixin.CFVariableMixin

property), 288
standard_name() (iris.coords.AncillaryVariable

property), 315
standard_name() (iris.coords.AuxCoord property),

320
standard_name() (iris.coords.CellMeasure prop-

erty), 324
standard_name() (iris.coords.Coord property), 330
standard_name() (iris.coords.DimCoord property),

337
standard_name() (iris.cube.Cube property), 354
standard_name() (iris.fileformats.rules.ConversionMetadata

property), 407
standard_name() (iris.fileformats.um_cf_map.CFName

property), 413
standard_parallel (iris.coord_systems.Mercator

attribute), 307
standard_parallels

(iris.coord_systems.AlbersEqualArea at-
tribute), 302

STASH (class in iris.fileformats.pp), 403
stash() (iris.fileformats.pp.PPField property), 401

548 Index

Iris, Release 3.0.1

STD_DEV (in module iris.analysis), 249
Stereographic (class in iris.coord_systems), 309
structured_um_loading() (in module

iris.fileformats.um), 410
subset() (iris.cube.Cube method), 352
subtract() (in module iris.analysis.maths), 240
SUM (in module iris.analysis), 250
summary() (iris.cube.Cube method), 352
sweep_angle_axis (iris.coord_systems.Geostationary

attribute), 304
symbols() (in module iris.plot), 428
SymmetricNormalize (class in iris.palette), 422

T
t1() (iris.fileformats.pp.PPField property), 401
t2() (iris.fileformats.pp.PPField property), 401
time_unit() (iris.fileformats.pp.PPField method),

401
timetuple (iris.time.PartialDateTime attribute), 433
to_cube() (iris.fileformats.abf.ABFField method), 371
token() (iris.common.metadata.AncillaryVariableMetadata

class method), 276
token() (iris.common.metadata.BaseMetadata class

method), 278
token() (iris.common.metadata.CellMeasureMetadata

class method), 280
token() (iris.common.metadata.CoordMetadata class

method), 282
token() (iris.common.metadata.CubeMetadata class

method), 284
token() (iris.common.metadata.DimCoordMetadata

class method), 287
Trajectory (class in iris.analysis.trajectory), 243
transform (iris.fileformats.rules.ConcreteReferenceTarget

attribute), 406
transform() (iris.fileformats.rules.ReferenceTarget

property), 409
TranslationError (class in iris.exceptions), 362
transpose() (iris.cube.Cube method), 352
transpose() (iris.plot.PlotDefn property), 429
TransverseMercator (class in iris.coord_systems),

310
true_scale_lat (iris.coord_systems.Stereographic

attribute), 310

U
ugrid() (in module iris.experimental.ugrid), 370
um_to_pp() (in module iris.fileformats.um), 409
unify_time_units() (in module iris.util), 443
UnitConversionError (class in iris.exceptions),

363
units() (iris.aux_factory.AuxCoordFactory property),

262

units() (iris.aux_factory.HybridHeightFactory prop-
erty), 264

units() (iris.aux_factory.HybridPressureFactory
property), 265

units() (iris.aux_factory.OceanSFactory property),
267

units() (iris.aux_factory.OceanSg1Factory property),
268

units() (iris.aux_factory.OceanSg2Factory property),
270

units() (iris.aux_factory.OceanSigmaFactory prop-
erty), 272

units() (iris.aux_factory.OceanSigmaZFactory prop-
erty), 273

units() (iris.common.metadata.AncillaryVariableMetadata
property), 277

units() (iris.common.metadata.BaseMetadata prop-
erty), 279

units() (iris.common.metadata.CellMeasureMetadata
property), 281

units() (iris.common.metadata.CoordMetadata prop-
erty), 283

units() (iris.common.metadata.CubeMetadata prop-
erty), 285

units() (iris.common.metadata.DimCoordMetadata
property), 287

units() (iris.common.mixin.CFVariableMixin prop-
erty), 288

units() (iris.coords.AncillaryVariable property), 315
units() (iris.coords.AuxCoord property), 320
units() (iris.coords.CellMeasure property), 324
units() (iris.coords.Coord property), 330
units() (iris.coords.DimCoord property), 337
units() (iris.cube.Cube property), 354
units() (iris.fileformats.rules.ConversionMetadata

property), 407
units() (iris.fileformats.um_cf_map.CFName prop-

erty), 413
UnknownCellMethodWarning (class in

iris.fileformats.netcdf), 397
unrotate_pole() (in module

iris.analysis.cartography), 234
UnstructuredNearest (class in iris.analysis), 259
UnstructuredNearestNeigbourRegridder

(class in iris.analysis.trajectory), 244
update() (iris.aux_factory.AuxCoordFactory method),

261
update() (iris.aux_factory.HybridHeightFactory

method), 263
update() (iris.aux_factory.HybridPressureFactory

method), 265
update() (iris.aux_factory.OceanSFactory method),

266
update() (iris.aux_factory.OceanSg1Factory method),

Index 549

Iris, Release 3.0.1

268
update() (iris.aux_factory.OceanSg2Factory method),

269
update() (iris.aux_factory.OceanSigmaFactory

method), 271
update() (iris.aux_factory.OceanSigmaZFactory

method), 273
update() (iris.fileformats.cf.CFGroup method), 382
update_global_attributes()

(iris.fileformats.netcdf.Saver method), 395
update_metadata() (iris.analysis.Aggregator

method), 253
update_metadata()

(iris.analysis.WeightedAggregator method),
255

updated() (iris.aux_factory.AuxCoordFactory
method), 261

updated() (iris.aux_factory.HybridHeightFactory
method), 263

updated() (iris.aux_factory.HybridPressureFactory
method), 265

updated() (iris.aux_factory.OceanSFactory method),
266

updated() (iris.aux_factory.OceanSg1Factory
method), 268

updated() (iris.aux_factory.OceanSg2Factory
method), 270

updated() (iris.aux_factory.OceanSigmaFactory
method), 271

updated() (iris.aux_factory.OceanSigmaZFactory
method), 273

UriProtocol (class in iris.io.format_picker), 417
uses_weighting() (iris.analysis.WeightedAggregator

method), 255

V
values() (iris.fileformats.cf.CFGroup method), 382
values() (iris.fileformats.name_loaders.NAMECoord

property), 391
var_name() (iris.aux_factory.AuxCoordFactory prop-

erty), 262
var_name() (iris.aux_factory.HybridHeightFactory

property), 264
var_name() (iris.aux_factory.HybridPressureFactory

property), 265
var_name() (iris.aux_factory.OceanSFactory prop-

erty), 267
var_name() (iris.aux_factory.OceanSg1Factory prop-

erty), 269
var_name() (iris.aux_factory.OceanSg2Factory prop-

erty), 270
var_name() (iris.aux_factory.OceanSigmaFactory

property), 272

var_name() (iris.aux_factory.OceanSigmaZFactory
property), 273

var_name() (iris.common.metadata.AncillaryVariableMetadata
property), 277

var_name() (iris.common.metadata.BaseMetadata
property), 279

var_name() (iris.common.metadata.CellMeasureMetadata
property), 281

var_name() (iris.common.metadata.CoordMetadata
property), 283

var_name() (iris.common.metadata.CubeMetadata
property), 285

var_name() (iris.common.metadata.DimCoordMetadata
property), 287

var_name() (iris.common.mixin.CFVariableMixin
property), 288

var_name() (iris.coords.AncillaryVariable property),
315

var_name() (iris.coords.AuxCoord property), 320
var_name() (iris.coords.CellMeasure property), 324
var_name() (iris.coords.Coord property), 330
var_name() (iris.coords.DimCoord property), 337
var_name() (iris.cube.Cube property), 354
variable_name (iris.fileformats.netcdf.NetCDFDataProxy

attribute), 395
VARIANCE (in module iris.analysis), 250
vector_coord() (in module iris.fileformats.rules),

406
vector_dims_shape()

(iris.fileformats.um.FieldCollation property),
413

verify() (in module iris.fileformats.pp_save_rules),
405

VerticalPerspective (class in
iris.coord_systems), 311

vmax() (iris.palette.SymmetricNormalize property), 423
vmin() (iris.palette.SymmetricNormalize property), 423

W
WeightedAggregator (class in iris.analysis), 253
with_traceback() (iris.exceptions.AncillaryVariableNotFoundError

method), 360
with_traceback() (iris.exceptions.CellMeasureNotFoundError

method), 360
with_traceback() (iris.exceptions.ConcatenateError

method), 360
with_traceback() (iris.exceptions.ConstraintMismatchError

method), 360
with_traceback() (iris.exceptions.CoordinateCollapseError

method), 360
with_traceback() (iris.exceptions.CoordinateMultiDimError

method), 361
with_traceback() (iris.exceptions.CoordinateNotFoundError

method), 361

550 Index

Iris, Release 3.0.1

with_traceback() (iris.exceptions.CoordinateNotRegularError
method), 361

with_traceback() (iris.exceptions.DuplicateDataError
method), 361

with_traceback() (iris.exceptions.IgnoreCubeException
method), 361

with_traceback() (iris.exceptions.InvalidCubeError
method), 361

with_traceback() (iris.exceptions.IrisError
method), 362

with_traceback() (iris.exceptions.LazyAggregatorError
method), 362

with_traceback() (iris.exceptions.MergeError
method), 362

with_traceback() (iris.exceptions.NotYetImplementedError
method), 362

with_traceback() (iris.exceptions.TranslationError
method), 362

with_traceback() (iris.exceptions.UnitConversionError
method), 363

with_traceback() (iris.fileformats.netcdf.UnknownCellMethodWarning
method), 397

with_traceback() (iris.IrisDeprecation method),
449

WPERCENTILE (in module iris.analysis), 251
wrap_lons() (in module iris.analysis.cartography),

235
write() (iris.fileformats.netcdf.Saver method), 395

X
x_bounds() (iris.fileformats.pp.PPField property),

401
xml() (iris.cube.Cube method), 353
xml() (iris.cube.CubeList method), 359
xml_element() (iris.aux_factory.AuxCoordFactory

method), 262
xml_element() (iris.aux_factory.HybridHeightFactory

method), 263
xml_element() (iris.aux_factory.HybridPressureFactory

method), 265
xml_element() (iris.aux_factory.OceanSFactory

method), 267
xml_element() (iris.aux_factory.OceanSg1Factory

method), 268
xml_element() (iris.aux_factory.OceanSg2Factory

method), 270
xml_element() (iris.aux_factory.OceanSigmaFactory

method), 271
xml_element() (iris.aux_factory.OceanSigmaZFactory

method), 273
xml_element() (iris.coord_systems.AlbersEqualArea

method), 302
xml_element() (iris.coord_systems.CoordSystem

method), 302

xml_element() (iris.coord_systems.GeogCS
method), 303

xml_element() (iris.coord_systems.Geostationary
method), 304

xml_element() (iris.coord_systems.LambertAzimuthalEqualArea
method), 305

xml_element() (iris.coord_systems.LambertConformal
method), 306

xml_element() (iris.coord_systems.Mercator
method), 307

xml_element() (iris.coord_systems.Orthographic
method), 308

xml_element() (iris.coord_systems.OSGB method),
307

xml_element() (iris.coord_systems.RotatedGeogCS
method), 309

xml_element() (iris.coord_systems.Stereographic
method), 310

xml_element() (iris.coord_systems.TransverseMercator
method), 311

xml_element() (iris.coord_systems.VerticalPerspective
method), 312

xml_element() (iris.coords.AncillaryVariable
method), 314

xml_element() (iris.coords.AuxCoord method), 319
xml_element() (iris.coords.CellMeasure method),

323
xml_element() (iris.coords.CellMethod method),

324
xml_element() (iris.coords.Coord method), 329
xml_element() (iris.coords.DimCoord method), 336

Y
y_bounds() (iris.fileformats.pp.PPField property),

401
year (iris.time.PartialDateTime attribute), 433

Index 551

	Installing Iris
	Gallery
	Introduction
	Iris Data Structures
	Loading Iris Cubes
	Saving Iris Cubes
	Navigating a Cube
	Subsetting a Cube
	Real and Lazy Data
	Plotting a Cube
	Cube Interpolation and Regridding
	Merge and Concatenate
	Cube Statistics
	Cube Maths
	Citing Iris
	Code Maintenance
	Introduction
	Metadata
	Lenient Metadata
	Lenient Cube Maths
	Getting Involved
	Working With Iris Source Code
	Contributing to the Documentation
	Contributing to the Code Base
	Contributing Your Changes
	Releases
	Iris API
	What’s New in Iris
	Iris Technical Papers
	Iris Copyright, Licensing and Contributors
	Bibliography
	Python Module Index
	Index

