.. include:: ../common_links.inc
.. _glossary:
Glossary
=============
.. glossary::
Cartopy
A python package for producing maps, and other geospatial data.
Allows plotting on these maps, over a range of projections.
| **Related:** :term:`Matplotlib`
| **More information:** `CartoPy Site `_
|
CF Conventions
Rules for storing meteorological Climate and Forecast data in
:term:`NetCDF Format` files, defining a standard metadata format to
describe what the data is.
This also forms the data model which iris is based on.
| **Related:** :term:`NetCDF Format`
| **More information:** `CF Conventions `_
|
Coordinate
A container for data points, comes in three main flavours.
- Dimensional Coordinate -
A coordinate that describes a single data dimension of a cube.
They can only contain numerical values, in a sorted order (ascending
or descending).
- Auxiliary Coordinate -
A coordinate that can map to multiple data dimensions. Can
contain any type of data.
- Scalar Coordinate -
A coordinate that is not mapped to any data dimension, instead
representing the cube as a whole.
| **Related:** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Cube
Cubes are the main method of storing data in Iris. A cube can consist of:
- Array of :term:`Phenomenon` Data (Required)
- :term:`Coordinates `
- :term:`Standard Name`
- :term:`Long Name`
- :term:`Unit`
- :term:`Cell Methods `
- :term:`Coordinate Factories `
| **Related:** :term:`NumPy`
| **More information:** :doc:`iris_cubes`
|
Cell Method
A cell method represents that a cube's data has been derived from
a past statistical operation, such as a
MEAN or SUM operation.
| **Related:** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Coordinate Factory
A coordinate factory derives coordinates (sometimes referred to as
derived coordinates) from the values of existing coordinates.
E.g. A hybrid height factory might use "height above sea level"
and "height at ground level" coordinate data to calculate a
"height above ground level" coordinate.
| **Related:** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Dask
A data analytics python library. Iris predominantly uses Dask Arrays;
a collection of NumPy-esque arrays. The data is operated in batches,
so that not all data is in RAM at once.
| **Related:** :term:`Lazy Data` **|** :term:`NumPy`
| **More information:** :doc:`real_and_lazy_data`
|
Fields File (FF) Format
A meteorological file format, the output of the Unified Model.
| **Related:** :term:`GRIB Format`
**|** :term:`Post Processing (PP) Format` **|** :term:`NetCDF Format`
| **More information:** `Unified Model `_
|
GRIB Format
A WMO-standard meteorological file format.
| **Related:** :term:`Fields File (FF) Format`
**|** :term:`Post Processing (PP) Format` **|** :term:`NetCDF Format`
| **More information:** `GRIB 1 User Guide `_
**|** `GRIB 2 User Guide.pdf `_
|
Lazy Data
Data stored in hard drive, and then temporarily loaded into RAM in
batches when needed. Allows of less memory usage and faster performance,
thanks to parallel processing.
| **Related:** :term:`Dask` **|** :term:`Real Data`
| **More information:** :doc:`real_and_lazy_data`
|
Long Name
A name describing a :term:`phenomenon`, not limited to the
the same restraints as :term:`standard name`.
| **Related:** :term:`Standard Name` **|** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Matplotlib
A python package for plotting and projecting data in a wide variety
of formats.
| **Related:** :term:`CartoPy` **|** :term:`NumPy`
| **More information:** `matplotlib`_
|
Metadata
The information which describes a phenomenon.
Within Iris specifically, all information which
distinguishes one phenomenon from another,
e.g. :term:`units ` or :term:`Cell Methods `
| **Related:** :term:`Phenomenon` **|** :term:`Cube`
| **More information:** :doc:`../further_topics/metadata`
|
NetCDF Format
A flexible file format for storing multi-dimensional array-like data.
When Iris loads this format, it also especially recognises and interprets data
encoded according to the :term:`CF Conventions`.
__ `NetCDF4`_
| **Related:** :term:`Fields File (FF) Format`
**|** :term:`GRIB Format` **|** :term:`Post Processing (PP) Format`
| **More information:** `NetCDF-4 Python Git`__
|
NumPy
A mathematical Python library, predominantly based around
multi-dimensional arrays.
| **Related:** :term:`Dask` **|** :term:`Cube`
**|** :term:`Xarray`
| **More information:** `NumPy.org `_
|
Phenomenon
The primary data which is measured, usually within a cube, e.g.
air temperature.
| **Related:** :term:`Metadata`
**|** :term:`Standard Name` **|** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Post Processing (PP) Format
A meteorological file format, created from a post processed
:term:`Fields File (FF) Format`.
| **Related:** :term:`GRIB Format` **|** :term:`NetCDF Format`
| **More information:** `PP Wikipedia Page `_
|
Real Data
Data that has been loaded into RAM, as opposed to sitting
on the hard drive.
| **Related:** :term:`Lazy Data` **|** :term:`NumPy`
| **More information:** :doc:`real_and_lazy_data`
|
Standard Name
A name describing a :term:`phenomenon`, one from a fixed list
defined at `CF Standard Names `_.
| **Related:** :term:`Long Name` **|** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Unit
The unit with which the :term:`phenomenon` is measured e.g. m / sec.
| **Related:** :term:`Cube`
| **More information:** :doc:`iris_cubes`
|
Xarray
A python library for sophisticated labelled multi-dimensional operations.
Has a broader scope than Iris - it is not focused on meteorological data.
| **Related:** :term:`NumPy`
| **More information:** `Xarray Documentation `_
|
----
`To top `_
| |